Articles | Volume 18, issue 19
https://doi.org/10.5194/amt-18-5037-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-5037-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of total ozone measurements in Melbourne, Australia, performed with a low-cost micro spectrometer and a Brewer MK-III
Department of Automation and Process Engineering, UiT, The Arctic University of Norway, Tromsø, 9018, Norway
Matt Tully
Bureau of Meteorology, 700 Collins Street, Docklands, Victoria 3008, Australia
Steve Rhodes
Bureau of Meteorology, 700 Collins Street, Docklands, Victoria 3008, Australia
Related authors
No articles found.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Robert G. Ryan, Jeremy D. Silver, Richard Querel, Dan Smale, Steve Rhodes, Matt Tully, Nicholas Jones, and Robyn Schofield
Atmos. Meas. Tech., 13, 6501–6519, https://doi.org/10.5194/amt-13-6501-2020, https://doi.org/10.5194/amt-13-6501-2020, 2020
Short summary
Short summary
Models have identified Australasia as a formaldehyde (HCHO) hotspot from vegetation sources, but few measurement studies exist to verify this. We compare, and find good agreement between, HCHO measurements using three – two ground-based and one satellite-based – different spectroscopic techniques in Australia and New Zealand. This gives confidence in using satellite observations to study HCHO and associated air chemistry and pollution problems in this under-studied part of the world.
Cited articles
Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass., 1986.
Bass, A. and Paur, R.: The ultraviolet cross-sections of ozone: I. The measurements, in: Atmospheric ozone, Springer, 606–610, https://doi.org/10.1007/978-94-009-5313-0_120, 1985.
Campanelli, M., Diémoz, H., Siani, A. M., di Sarra, A., Iannarelli, A. M., Kudo, R., Fasano, G., Casasanta, G., Tofful, L., Cacciani, M., Sanò, P., and Dietrich, S.: Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index, Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022, 2022.
Chadyšiene, R. and Girgždys, A.: Ultraviolet radiation albedo of natural surfaces, Journal of Environmental Engineering and Landscape Management, 16, 83–88, https://doi.org/10.3846/1648-6897.2008.16.83-88, 2008.
Crutzen, P. J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere, In: Annual review of earth and planetary sciences, Annual Reviews, 7, 443–472, 1979.
Dahlback, A.: Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instruments, Appl. Optics, 35, 6514–6521, https://doi.org/10.1364/AO.35.006514, 1996.
Dahlback, A. and Stamnes, K.: A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planetary and Space Science, 39, 671–683, https://doi.org/10.1016/0032-0633(91)90061-E, 1991.
Dobson, G. M. B. and Harrison, D. N.: Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 110, 660–693, https://doi.org/10.1098/rspa.1926.0040, 1926.
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 1647–1672, https://doi.org/10.5194/gmd-9-1647-2016, 2016.
Estupiñán, J. G., Raman, S., Crescenti, G. H., Streicher, J. J., and Barnard, W. F.: Effects of clouds and haze on UV-B radiation, Journal of Geophysical Research: Atmospheres, 101, 16807–16816, https://doi.org/10.1029/96JD01170, 1996.
Fan, L., Li, W., Dahlback, A., Stamnes, J. J., Stamnes, S., and Stamnes, K.: Long-term comparisons of UV index values derived from a NILU-UV instrument, NWS, and OMI in the New York area, Appl. Optics, 54, 1945–1951, https://doi.org/10.1364/AO.54.001945, 2015.
Fioletov, V., McLinden, C., McElroy, C., and Savastiouk, V.: New method for deriving total ozone from Brewer zenith sky observations, Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD015399, 2011.
Fioletov, V. E., Kerr, J. B., and Wardle, D. I.: The relationship between total ozone and spectral UV irradiance from Brewer observations and its use for derivation of total ozone from UV measurements, Geophys. Res. Lett., 24, 2997–3000, https://doi.org/10.1029/97gl53153, 1997.
Fioletov, V. E., Kerr, J. B., McElroy, C. T., Wardle, D. I., Savastiouk, V., and Grajnar, T. S.: The Brewer reference triad, Geophys. Res. Lett., 32, L20805, https://doi.org/10.1029/2005gl024244, 2005.
Geddes, A., Liley, B., McKenzie, R., Kotkamp, M., and Querel, R.: Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol, Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024, 2024.
Gkertsi, F., Bais, A. F., Kouremeti, N., Drosoglou, T., Fountoulakis, I., and Fragkos, K.: DOAS-based total column ozone retrieval from Phaethon system, Atmospheric Environment, 180, 51–58, https://doi.org/10.1016/j.atmosenv.2018.02.036, 2018.
Herman, J., Evans, R., Cede, A., Abuhassan, N., Petropavlovskikh, I., and McConville, G.: Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado, Atmos. Meas. Tech., 8, 3407–3418, https://doi.org/10.5194/amt-8-3407-2015, 2015.
Høiskar, B. A. K., Haugen, R., Danielsen, T., Kylling, A., Edvardsen, K., Dahlback, A., Johnsen, B., Blumthaler, M., and Schreder, J.: Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates, Appl. Optics, 42, 3472–3479, https://doi.org/10.1364/AO.42.003472, 2003.
Kanellis, V. G.: Ultraviolet radiation sensors: a review, Biophysical Reviews, 11, 895–899, 2019.
Kazantzidis, A., Bais, A. F., Zempila, M. M., Meleti, C., Eleftheratos, K., and Zerefos, C. S.: Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers, International Journal of Remote Sensing, 30, 4273–4281, https://doi.org/10.1080/01431160902825073, 2009.
Kerr, J. B., McElroy, C. T., and Olafson, R. A.: Measurements of ozone with the Brewer spectrophotometer, in: Proceedings of the Quadrennial International Ozone Symposium, 74–79, 1981.
Kerr, J., McElroy, C., Wardle, D., Olafson, R., and Evans, W.: The automated Brewer spectrophotometer, in: Atmospheric Ozone, Springer, 396–401, https://doi.org/10.1007/978-94-009-5313-0_80, 1985.
Lakkala, K., Redondas, A., Meinander, O., Torres, C., Koskela, T., Cuevas, E., Taalas, P., Dahlback, A., Deferrari, G., Edvardsen, K., and Ochoa, H.: Quality assurance of the solar UV network in the Antarctic, J. Geophys. Res.-Atmos., 110, D15101. https://doi.org/10.1029/2004jd005584, 2005.
Lakkala, K., Arola, A., Gröbner, J., León-Luis, S. F., Redondas, A., Kazadzis, S., Karppinen, T., Karhu, J. M., Egli, L., Heikkilä, A., Koskela, T., Serrano, A., and Vilaplana, J. M.: Performance of the FMI cosine error correction method for the Brewer spectral UV measurements, Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, 2018.
Lakkala, K., Aun, M., Sanchez, R., Bernhard, G., Asmi, E., Meinander, O., Nollas, F., Hülsen, G., Karppinen, T., Aaltonen, V., Arola, A., and de Leeuw, G.: New continuous total ozone, UV, VIS and PAR measurements at Marambio, 64° S, Antarctica, Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, 2020.
Lapeta, B., Engelsen, O., Litynska, Z., Kois, B., and Kylling, A.: Sensitivity of surface UV radiation and ozone column retrieval to ozone and temperature profiles, Journal of Geophysical Research: Atmospheres, 105, 5001–5007, 2000.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Mayer, B., Kylling, A., Madronich, S., and Seckmeyer, G.: Enhanced absorption of UV radiation due to multiple scattering in clouds: Experimental evidence and theoretical explanation, Journal of Geophysical Research: Atmospheres, 103, 31241–31254, https://doi.org/10.1029/98jd02676, 1998.
McKenzie, R. L., Kotkamp, M., and Ireland, W.: Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand, Geophys. Res. Lett., 23, 1757–1760, https://doi.org/10.1029/96GL01668, 1996.
Michalsky, J. and McConville, G.: Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer, Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024, 2024.
Molina, M. J. and Rowland, F. S.: Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, Nature, 249, 810–812, 1974.
Reda, I. and Andreas, A.: Solar position algorithm for solar radiation applications, Solar energy, 76, 577–589, 2004.
Rowland, F. S. and Molina, M. J.: Chlorofluoromethanes in the environment, Reviews of Geophysics, 13, 1–35, 1975.
Sabburg, J. and Wong, J.: The effect of clouds on enhancing UVB irradiance at the Earth's surface: A one year study, Geophys. Res. Lett., 27, 3337–3340, https://doi.org/10.1029/2000GL011683, 2000.
Sabburg, J. M., Parisi, A. V., and Kimlin, M. G.: Enhanced spectral UV irradiance: a 1 year preliminary study, Atmos. Res., 66, 261–272, https://doi.org/10.1016/s0169-8095(03)00037-1, 2003.
Savastiouk, V., Diémoz, H., and McElroy, C. T.: A physically based correction for stray light in Brewer spectrophotometer data analysis, Atmos. Meas. Tech., 16, 4785–4806, https://doi.org/10.5194/amt-16-4785-2023, 2023.
Schafer, J. S., Saxena, V. K., Wenny, B. N., Barnard, W., and De Luisi, J. J.: Observed influence of clouds on ultraviolet-B radiation, Geophys. Res. Lett., 23, 2625–2628, https://doi.org/10.1029/96GL01984, 1996.
Serrano, A., Abril-Gago, J., and García-Orellana, C. J.: Development of a Low-Cost Device for Measuring Ultraviolet Solar Radiation, Frontiers in Environmental Science, 9, https://doi.org/10.3389/fenvs.2021.737875, 2022.
Shettle, E. P.: Models of aerosols, clouds, and precipitation for atmospheric propagation studies, in: AGARD, 1 March 1990, SEE N90-21907 15-32, https://www.researchgate.net/publication/234312286 (last access: 1 October 2025), 1990.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, 2502–2509, https://doi.org/10.1364/AO.27.002502, 1988.
Stamnes, K., Slusser, J., and Bowen, M.: Derivation of total ozone abundance and cloud effects from spectral irradiance measurements, Appl. Optics, 30, 4418–4426, https://doi.org/10.1364/AO.30.004418, 1991.
Svendby, T. M., Johnsen, B., Kylling, A., Dahlback, A., Bernhard, G. H., Hansen, G. H., Petkov, B., and Vitale, V.: GUV long-term measurements of total ozone column and effective cloud transmittance at three Norwegian sites, Atmos. Chem. Phys., 21, 7881–7899, https://doi.org/10.5194/acp-21-7881-2021, 2021.
Sztipanov, M., Tumeh, L., Li, W., Svendby, T., Kylling, A., Dahlback, A., Stamnes, J. J., Hansen, G., and Stamnes, K.: Ground-based measurements of total ozone column amount with a multichannel moderate-bandwidth filter instrument at the Troll research station, Antarctica, Appl. Optics, 59, 97–106, https://doi.org/10.1364/AO.59.000097, 2020.
Thuillier, G., Hersé, M., Simon, P., Mandel, H., and Gillotay, D.: Observation of the solar spectral irradiance from 200 nm to 870 nm during the ATLAS 1 and ATLAS 2 missions by the SOLSPEC spectrometer, Metrologia, 35, 689, https://doi.org/10.1088/0026-1394/35/4/79 1998.
Tully, M.: Global Atmosphere Watch (GAW) Ozone Networks, in: Handbook of Air Quality and Climate Change, 181–193, https://doi.org/10.1007/978-981-15-2760-9_53, 2023.
Tully, M. B., Klekociuk, A. R., and Rhodes, S. K.: Trends and Variability in Total Ozone from a Mid-Latitude Southern Hemisphere Site: The Melbourne Dobson Record 1978–2012, Atmosphere-Ocean, 53, 58–65, https://doi.org/10.1080/07055900.2013.869192, 2015.
Turner, J., Igoe, D., Parisi, A. V., McGonigle, A. J., Amar, A., and Wainwright, L.: A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes, Science of the Total Environment, 706, 135873, https://doi.org/10.1016/j.scitotenv.2019.135873, 2020.
Zhao, D., Norsang, G., Tsoja, W., Jin, Y., Duan, J., and Zhou, Y.: Measurements of Solar UV Radiation in Lhasa, Tibet, Journal of Atmospheric and Environmental Optics, 13, 81–87, 2018.
Zuber, R., Köhler, U., Egli, L., Ribnitzky, M., Steinbrecht, W., and Gröbner, J.: Total ozone column intercomparison of Brewers, Dobsons, and BTS-Solar at Hohenpeißenberg and Davos in 2019/2020, Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, 2021.
Short summary
A new, low-cost instrument for measuring total column ozone was tested against a MK III Brewer spectrophotometer for six months. Using the "Global Irradiance" method from the Norwegian GUV network, it showed ozone values matching Direct Sun Brewer measurements with a 1.8 % standard deviation. Despite temperature and cloud dependencies, the instrument is robust and easy to use. Fully coverage of the UV-A/B spectrum allows for further UV-radiation analysis. Total cost is less than EUR 3000.
A new, low-cost instrument for measuring total column ozone was tested against a MK III Brewer...