Chen, Q., Schissel, C., Kimura, Y., McGaughey, G., McDonald-Buller, E., and Allen, D. T.: Assessing detection efficiencies for continuous methane emission monitoring systems at oil and gas production sites, ACS ES&T, 57, 1788–1796,
https://doi.org/10.1021/acs.est.2c06990, 2023.
a
Chen, Q., Kimura, Y., and Allen, D. T.: Defining Detection Limits for Continuous Monitoring Systems for Methane Emissions at Oil and Gas Facilities, Atmosphere, 15, 383,
https://doi.org/10.3390/atmos15030383, 2024.
a
Cheptonui, F., Emerson, E., Ilonze, C., Day, R., Levin, E., Fleischmann, D., Brouwer, R., and Zimmerle, D.: Assessing the Performance of Emerging and Existing Continuous Monitoring Solutions under a Single-blind Controlled Testing Protocol, ChemRxiv,
https://doi.org/10.26434/chemrxiv-2024-f1znb, 2025.
a,
b
Cimorelli, A. J., Perry, S. G., Venkatram, A., Weil, J. C., Paine, R. J., Wilson, R. B., Lee, R. F., Peters, W. D., and Brode, R. W.: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization, J. Appl. Meteorol. Clim., 44, 682–693,
https://doi.org/10.1175/JAM2227.1, 2005.
a
Daniels, W. S., Jia, M., and Hammerling, D. M.: Detection, localization, and quantification of single-source methane emissions on oil and gas production sites using point-in-space continuous monitoring systems, Elementa, 12,
https://doi.org/10.1525/elementa.2023.00110, 2024b.
a
Gosse, C.: Performance Evaluation Of A Low-Cost Sensor For Continuous Methane Monitoring, PhD thesis, Dalhousie University,
https://dalspace.library.dal.ca/items/e1216315-cb26-433b-911c-1ddfc59d5a8d (last access: 15 October 2025), 2023.
a,
b
Hollenbeck, D., Zulevic, D., and Chen, Y.: Advanced leak detection and quantification of methane emissions using sUAS, Drones-Basel, 5, 117,
https://doi.org/10.3390/drones5040117, 2021.
a
Ijzermans, R., Jones, M., Weidmann, D., van de Kerkhof, B., and Randell, D.: Long-term continuous monitoring of methane emissions at an oil and gas facility using a multi-open-path laser dispersion spectrometer, Sci. Rep., 14, 623,
https://doi.org/10.1038/s41598-023-50081-9, 2024.
a
Ilonze, C., Emerson, E., Duggan, A., and Zimmerle, D.: Assessing the Progress of the Performance of Continuous Monitoring Solutions under a Single-Blind Controlled Testing Protocol, ACS ES&T, 58, 10941–10955,
https://doi.org/10.1021/acs.est.3c08511, 2024.
a
Karion, A., Lauvaux, T., Lopez Coto, I., Sweeney, C., Mueller, K., Gourdji, S., Angevine, W., Barkley, Z., Deng, A., Andrews, A., Stein, A., and Whetstone, J.: Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case study, Atmos. Chem. Phys., 19, 2561–2576,
https://doi.org/10.5194/acp-19-2561-2019, 2019.
a
Kumar, P., Broquet, G., Caldow, C., Laurent, O., Gichuki, S., Cropley, F., Yver-Kwok, C., Fontanier, B., Lauvaux, T., Ramonet, M., Shah, A., Berthe, G., Martin, F., Duclaux, O., Juery, C., Bouchet, C., Pitt, J., and Ciais, P.: Near-field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements, Q J. Roy. Meteor. Soc., 148, 1886–1912,
https://doi.org/10.1002/qj.4283, 2022.
a
Peischl, J., Karion, A., Sweeney, C., Kort, E., Smith, M., Brandt, A., Yeskoo, T., Aikin, K., Conley, S., Gvakharia, A., Trainer, M., Wolter, S., and Ryerson, T. B.: : Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota, J. Geophys. Res.-Atmos., 121, 6101–6111,
https://doi.org/10.1002/2015JD024631, 2016.
a
Riddick, S. N. and Mauzerall, D. L.: Likely substantial underestimation of reported methane emissions from United Kingdom upstream oil and gas activities, Energ. Environ. Sci., 16, 295–304,
https://doi.org/10.1039/D2EE03072A, 2023.
a
Riddick, S. N., Mbua, M., Anand, A., Kiplimo, E., Santos, A., Upreti, A., and Zimmerle, D. J.: Estimating Total Methane Emissions from the Denver-Julesburg Basin Using Bottom-Up Approaches, Gases, 4, 236–252,
https://doi.org/10.3390/gases4030014, 2024a.
a
Riddick, S. N., Mbua, M., Santos, A., Hartzell, W., and Zimmerle, D. J.: Potential Underestimate in Reported Bottom-up Methane Emissions from Oil and Gas Operations in the Delaware Basin, Atmpsphere, 15, 202,
https://doi.org/10.3390/atmos15020202, 2024b.
a
Schade, G. W. and Gregg, M. L.: Testing HYSPLIT plume dispersion model performance using regional hydrocarbon monitoring data during a gas well blowout, Atmosphere, 13, 486,
https://doi.org/10.3390/atmos13030486, 2022.
a
Sharafutdinov, E.: Spatiotemporal variation in anthropogenic methane emissions in the Appalachian Basin, PhD thesis, University of Texas at Austin,
https://doi.org/10.26153/tsw/59648, 2024.
a
Sharan, M., Issartel, J.-P., Singh, S. K., and Kumar, P.: An inversion technique for the retrieval of single-point emissions from atmospheric concentration measurements, P. Roy. Soc. A-Math. Phy., 465, 2069–2088,
https://doi.org/10.1098/rspa.2008.0402, 2009.
a
Williams, J. P., Omara, M., Himmelberger, A., Zavala-Araiza, D., MacKay, K., Benmergui, J., Sargent, M., Wofsy, S. C., Hamburg, S. P., and Gautam, R.: Small emission sources in aggregate disproportionately account for a large majority of total methane emissions from the US oil and gas sector, Atmos. Chem. Phys., 25, 1513–1532,
https://doi.org/10.5194/acp-25-1513-2025, 2025.
a
Yang, X., Kuru, E., Zhang, X., Zhang, S., Wang, R., Ye, J., Yang, D., Klemeš, J. J., and Wang, B.: Direct measurement of methane emissions from the upstream oil and gas sector: Review of measurement results and technology advances (2018–2022), J. Clean. Prod., 414, 137693,
https://doi.org/10.1016/j.jclepro.2023.137693, 2023.
a
Zhang, E. J., Teng, C. C., Van Kessel, T. G., Klein, L., Muralidhar, R., Wysocki, G., and Green, W. M.: Field deployment of a portable optical spectrometer for methane fugitive emissions monitoring on oil and gas well pads, Sensors, 19, 2707,
https://doi.org/10.1038/s41598-025-99491-x, 2019.
a,
b