Articles | Volume 18, issue 21
https://doi.org/10.5194/amt-18-6291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-6291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In-line holographic droplet imaging: accelerated classification with convolutional neural networks and quantitative experimental validation
Birte Thiede
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Oliver Schlenczek
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Katja Stieger
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Alexander Ecker
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany
Eberhard Bodenschatz
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Faculty of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Laboratory of Atomic and Solid State Physics, Cornell University, 523 Clark Hall, Ithaca, NY 14853, USA
Gholamhossein Bagheri
CORRESPONDING AUTHOR
Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
Related authors
Birte Thiede, Freja Nordsiek, Yewon Kim, Eberhard Bodenschatz, and Gholamhossein Bagheri
Atmos. Meas. Tech., 18, 5999–6019, https://doi.org/10.5194/amt-18-5999-2025, https://doi.org/10.5194/amt-18-5999-2025, 2025
Short summary
Short summary
HoloTrack is a fully autonomous system designed to capture detailed data on cloud droplets. It combines holographic imaging with environmental sensors to measure droplet size, movement, and surrounding air conditions. The system records hologram pairs to track droplet motion. While it can be used in the lab, it is mainly designed for in-flight use to measure cloud droplets in-situ. This paper presents the instrument’s design and evaluates its performance through testing.
Oliver Schlenczek, Freja Nordsiek, Claudia E. Brunner, Venecia Chávez-Medina, Birte Thiede, Eberhard Bodenschatz, and Gholamhossein Bagheri
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-112, https://doi.org/10.5194/essd-2025-112, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
During the Pallas Cloud Experiment (PaCE) in Finland (Sept. 19–26, 2022), the Advanced Max Planck CloudKite instrument (MPCK+) gathered turbulence, wind shear, and cloud data from 0–1200 m. Flights lasted 1.5–3 hours, capturing droplet concentrations and size distributions at high resolution (<10 m spacing). The dataset aids studies of Arctic boundary layer clouds above freezing temperatures. This paper details the data collection, structure, and user guidelines.
Birte Thiede, Freja Nordsiek, Yewon Kim, Eberhard Bodenschatz, and Gholamhossein Bagheri
Atmos. Meas. Tech., 18, 5999–6019, https://doi.org/10.5194/amt-18-5999-2025, https://doi.org/10.5194/amt-18-5999-2025, 2025
Short summary
Short summary
HoloTrack is a fully autonomous system designed to capture detailed data on cloud droplets. It combines holographic imaging with environmental sensors to measure droplet size, movement, and surrounding air conditions. The system records hologram pairs to track droplet motion. While it can be used in the lab, it is mainly designed for in-flight use to measure cloud droplets in-situ. This paper presents the instrument’s design and evaluates its performance through testing.
Alina Sylvia Waltraud Reininger, Daria Tatsii, Taraprasad Bhowmick, Gholamhossein Bagheri, and Andreas Stohl
Atmos. Chem. Phys., 25, 10691–10705, https://doi.org/10.5194/acp-25-10691-2025, https://doi.org/10.5194/acp-25-10691-2025, 2025
Short summary
Short summary
Microplastics are transported over large distances in the atmosphere, but the shape-dependence of their atmospheric transport lacks investigation. We conducted laboratory experiments and atmospheric transport simulations to study the settling of commercially sold microplastics. We found that films settle up to 74 % slower and travel up to ~ 4x further than volume-equivalent spheres. Our work emphasizes the role of the atmosphere as a transport medium for commercial microplastics such as glitter.
Simon Thivet, Gholamhossein Bagheri, Przemyslaw M. Kornatowski, Allan Fries, Jonathan Lemus, Riccardo Simionato, Carolina Díaz-Vecino, Eduardo Rossi, Taishi Yamada, Simona Scollo, and Costanza Bonadonna
Atmos. Meas. Tech., 18, 2803–2824, https://doi.org/10.5194/amt-18-2803-2025, https://doi.org/10.5194/amt-18-2803-2025, 2025
Short summary
Short summary
This work presents an innovative way of sampling and analyzing volcanic clouds using an unoccupied aircraft system (UAS). The UAS can reach hazardous environments to sample volcanic particles and measure in situ key parameters, such as the atmospheric concentration of volcanic aerosols and gases. Acquired data bridge the gap between the existing approaches of ground sampling and remote sensing, thereby contributing to the understanding of volcanic cloud dispersion and impact.
Viet Le, Konstantinos Matthaios Doulgeris, Mika Komppula, John Backman, Gholamhossein Bagheri, Eberhard Bodenschatz, and David Brus
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-148, https://doi.org/10.5194/essd-2025-148, 2025
Preprint withdrawn
Short summary
Short summary
This manuscript presents datasets collected during the Pallas Cloud Experiment in northern Finland during the autumn of 2022. We provide an overview of the payload that measured meteorological, cloud, and aerosol properties, and was deployed on tethered balloon systems across 21 flights. Additionally, we describe the datasets obtained, including details of the instruments on the payload.
Venecia Chávez-Medina, Hossein Khodamoradi, Oliver Schlenczek, Freja Nordsiek, Claudia E. Brunner, Eberhard Bodenschatz, and Gholamhossein Bagheri
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-111, https://doi.org/10.5194/essd-2025-111, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
During the Pallas Cloud Experiment (PaCE) in Finland (September 15–28, 2022), detailed measurements of clouds and boundary layer turbulence were gathered. Using the Max Planck CloudKite platform, WinDarts, and a ground station, data were collected from ground level up to 1510 m. This paper presents the data collection process, structure, and user guidelines.
Oliver Schlenczek, Freja Nordsiek, Claudia E. Brunner, Venecia Chávez-Medina, Birte Thiede, Eberhard Bodenschatz, and Gholamhossein Bagheri
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-112, https://doi.org/10.5194/essd-2025-112, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
During the Pallas Cloud Experiment (PaCE) in Finland (Sept. 19–26, 2022), the Advanced Max Planck CloudKite instrument (MPCK+) gathered turbulence, wind shear, and cloud data from 0–1200 m. Flights lasted 1.5–3 hours, capturing droplet concentrations and size distributions at high resolution (<10 m spacing). The dataset aids studies of Arctic boundary layer clouds above freezing temperatures. This paper details the data collection, structure, and user guidelines.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024, https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind lidar designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose optimized post-processing for error reduction.
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024, https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Short summary
The rate at which energy is dissipated in a turbulent flow is an extremely important quantity. In the atmosphere, it is usually measured by recording a velocity time at a specific location. Our goal is to understand how best to estimate the dissipation rate from such data based on various available methods. Our reference for evaluating the performance of the different methods is data generated with direct numerical simulations and in highly controlled laboratory setups.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Sebastian O'Shea, Jonathan Crosier, James Dorsey, Louis Gallagher, Waldemar Schledewitz, Keith Bower, Oliver Schlenczek, Stephan Borrmann, Richard Cotton, Christopher Westbrook, and Zbigniew Ulanowski
Atmos. Meas. Tech., 14, 1917–1939, https://doi.org/10.5194/amt-14-1917-2021, https://doi.org/10.5194/amt-14-1917-2021, 2021
Short summary
Short summary
The number, shape, and size of ice crystals in clouds are important properties that influence the Earth's radiation budget, cloud evolution, and precipitation formation. This work suggests that one of the most widely used methods for in situ measurements of these properties has significant uncertainties and biases. We suggest methods that dramatically improve these measurements, which can be applied to past and future datasets from these instruments.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Cited articles
Allwayin, N., Larsen, M. L., Glienke, S., and Shaw, R. A.: Locally narrow droplet size distributions are ubiquitous in stratocumulus clouds, Science, 384, 528–532, 2024. a
Amsler, P.: Digital in-line holographic microscope for ice crystals, PhD thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-005900340, 2009. a
Bagheri, G., Schlenczek, O., Turco, L., Thiede, B., Stieger, K., Kosub, J. M., Clauberg, S., Pöhlker, M. L., Pöhlker, C., Moláček, J., Scheithauer, S., and Bodenschatz, E: Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission, Journal of Aerosol Science, 168, 106102, https://doi.org/10.1016/j.jaerosci.2022.106102, 2023. a
Beals, M. A., Fugal, J. P., Shaw, R. A., Lu, J., Spuler, S. M., and Stith, J. L.: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale, Science, 350, 87–90, 2015. a
Beals, M. J.: Investigations of cloud microphysical response to mixing using digital holography, PhD thesis, Michigan Technological University, https://doi.org/10.37099/mtu.dc.etds/669, 2013. a
Beck, A., Henneberger, J., Schöpfer, S., Fugal, J., and Lohmann, U.: HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager, Atmos. Meas. Tech., 10, 459–476, https://doi.org/10.5194/amt-10-459-2017, 2017. a
Berg, M. J.: Tutorial: Aerosol characterization with digital in-line holography, Journal of Aerosol Science, 165, 106023, https://doi.org/10.1016/j.jaerosci.2022.106023, 2022. a
Brown, P. R.: Use of holography for airborne cloud physics measurements, Journal of Atmospheric and Oceanic Technology, 6, 293–306, 1989. a
Chen, N., Wang, C., and Heidrich, W.: Holographic 3D particle imaging with model-based deep network, IEEE Transactions on Computational Imaging, 7, 288–296, 2021. a
Denis, L., Fournier, C., Fournel, T., Ducottet, C., and Jeulin, D.: Direct extraction of the mean particle size from a digital hologram, Applied Optics, 45, 944–952, 2006. a
Fugal, J. P.: In-situ measurement and characterization of cloud particles using digital in-line holography, PhD thesis, Michigan Technological University, https://doi.org/10.37099/mtu.dc.etds/104, 2007. a
Fugal, J. P. and Shaw, R. A.: Cloud particle size distributions measured with an airborne digital in-line holographic instrument, Atmos. Meas. Tech., 2, 259–271, https://doi.org/10.5194/amt-2-259-2009, 2009. a, b
Giri, R. and Berg, M. J.: The color of aerosol particles, Scientific Reports, 13, 1594, https://doi.org/10.1038/s41598-023-28823-6, 2023. a
Glienke, S., Kostinski, A. B., Shaw, R. A., Larsen, M. L., Fugal, J. P., Schlenczek, O., and Borrmann, S.: Holographic observations of centimeter-scale nonuniformities within marine stratocumulus clouds, Journal of the Atmospheric Sciences, 77, 499–512, 2020. a
Goodman, J. W.: Introduction to Fourier optics, Roberts and Company Publishers, ISBN 0-9747077-2-4, 2005. a
Guildenbecher, D. R., Gao, J., Reu, P. L., and Chen, J.: Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method, Applied Optics, 52, 3790–3801, 2013. a
Henneberger, J., Fugal, J. P., Stetzer, O., and Lohmann, U.: HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds, Atmos. Meas. Tech., 6, 2975–2987, https://doi.org/10.5194/amt-6-2975-2013, 2013. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, Vol. 25, https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (last access: 24 October 2025), 2012. a
Larsen, M. L. and Shaw, R. A.: A method for computing the three-dimensional radial distribution function of cloud particles from holographic images, Atmos. Meas. Tech., 11, 4261–4272, https://doi.org/10.5194/amt-11-4261-2018, 2018. a
Lauber, A.: In-situ observations of ice multiplication in clouds using a holographic imager and a deep learning algorithm for the classification of cloud particles, PhD thesis, ETH Zurich, https://doi.org/10.3929/ethz-b-000474830, 2020. a, b
O'Shea, S., Choularton, T., Lloyd, G., Crosier, J., Bower, K., Gallagher, M., Abel, S., Cotton, R., Brown, P., Fugal, J., Schlenczek, O., Borrmann, S., and Pickering, J. C.: Airborne observations of the microphysical structure of two contrasting cirrus clouds, Journal of Geophysical Research: Atmospheres, 121, 13–510, 2016. a
Paliwal, A., Schlenczek, O., Thiede, B., Pereira, M. S., Stieger, K., Bodenschatz, E., Bagheri, G., and Ecker, A.: FLASHμ: Fast Localizing And Sizing of Holographic Microparticles, arXiv [preprint], https://doi.org/10.48550/arXiv.2503.11538, 14 March 2025. a
Pu, S., Allano, D., Patte-Rouland, B., Malek, M., Lebrun, D., and Cen, K.: Particle field characterization by digital in-line holography: 3D location and sizing, Experiments in Fluids, 39, 1–9, 2005. a
Raupach, S., Vössing, H., Curtius, J., and Borrmann, S.: Digital crossed-beam holography for in situ imaging of atmospheric ice particles, Journal of Optics A: Pure and Applied Optics, 8, 796, https://doi.org/10.1088/1464-4258/8/9/014, 2006. a
Ren, Z., Xu, Z., and Lam, E. Y.: End-to-end deep learning framework for digital holographic reconstruction, Advanced Photonics, 1, 016004–016004, 2019. a
Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time pollen monitoring using digital holography, Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, 2020. a
Schreck, J. S., Hayman, M., Gantos, G., Bansemer, A., and Gagne, D. J.: Mimicking non-ideal instrument behavior for hologram processing using neural style translation, Optics Express, 31, 20049–20067, 2023. a
Shao, S., Mallery, K., and Hong, J.: Machine learning holography for measuring 3D particle distribution, Chemical Engineering Science, 225, 115830, https://doi.org/10.1016/j.ces.2020.115830, 2020. a
Shaw, R., Spuler, S., Beals, M., Black, N., Fugal, J., and Lu, J.: Final report on holodec 2 technology readiness level, Tech. rep., Technical report, DOE Office of Science Atmospheric Radiation Measurement, https://doi.org/10.2172/1043293, 2012. a
Shyam, K. M. and Hong, J.: A Review of 3D Particle Tracking and Flow Diagnostics Using Digital Holography, arXiv [preprint], https://doi.org/10.48550/arXiv.2412.18094, 24 December 2024. a
Spuler, S. M. and Fugal, J.: Design of an in-line, digital holographic imaging system for airborne measurement of clouds, Applied Optics, 50, 1405–1412, 2011. a
Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall, C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C., Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz, E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J., Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross, S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob, M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H., Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L., Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S., Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves, L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A., Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F., Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E., Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek, M., Brewer, A., Brilouet, P.-E., Brügmann, B., Buehler, S. A., Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X., Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski, M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet, C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z., Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H., Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K., Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Etienne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero, L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L., Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore, P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop, J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E., Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer, K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A., Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A., Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Kremper, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A., L'Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Landschützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik, G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena, M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell, O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Marinou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech, M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A., Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I., Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F., Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R., Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl, U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez, E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K., Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B., Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet, P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann, V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M., Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan, S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M. K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thompson, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A., Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B., Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth, M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer, V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and Zöger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, 2021. a, b, c, d, e, f, g
Thiede, B., Nordsiek, F., Kim, Y., Bodenschatz, E., and Bagheri, G.: HoloTrack: In-Situ Holographic Particle Tracking of Cloud Droplets, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-1774, 2025. a
Touloupas, G., Lauber, A., Henneberger, J., Beck, A., and Lucchi, A.: A convolutional neural network for classifying cloud particles recorded by imaging probes, Atmos. Meas. Tech., 13, 2219–2239, https://doi.org/10.5194/amt-13-2219-2020, 2020. a, b
Wang, H., Lyu, M., and Situ, G.: eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction, Optics Express, 26, 22603–22614, 2018. a
Wu, Y., Wu, J., Jin, S., Cao, L., and Jin, G.: Dense-U-net: dense encoder–decoder network for holographic imaging of 3D particle fields, Optics Communications, 493, 126970, https://doi.org/10.1016/j.optcom.2021.126970, 2021. a
Wu, Y., Wang, J., Thoroddsen, S. T., and Chen, N.: Single-Shot High-Density Volumetric Particle Imaging Enabled by Differentiable Holography, IEEE Transactions on Industrial Informatics, 20, 13696–13706, https://doi.org/10.1109/TII.2024.3431072, 2024. a
Xu, W., Jericho, M., Meinertzhagen, I., and Kreuzer, H.: Digital in-line holography for biological applications, Proceedings of the National Academy of Sciences, 98, 11301–11305, 2001. a
Zhang, Y., Zhu, Y., and Lam, E. Y.: Holographic 3D particle reconstruction using a one-stage network, Applied Optics, 61, B111–B120, 2022. a
Short summary
Accurate measurement of cloud particles is crucial for cloud research. While holographic imaging enables detailed analysis of cloud droplet size, shape, and distribution, processing errors remain poorly quantified. To address this, we developed CloudTarget, a patterned photomask that can quantify the detection efficiency and uncertainties. Additionally, our AI-based classification enhances both accuracy and speed, achieving over 90 % precision while accelerating analysis 100-fold.
Accurate measurement of cloud particles is crucial for cloud research. While holographic imaging...