Articles | Volume 18, issue 23
https://doi.org/10.5194/amt-18-7445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-7445-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Information-theoretic analysis of commercial microwave link and environmental variables in rainfall estimation
Dept. of Hydraulics and Hydrology, Czech Technical University in Prague, Prague, Czech Republic
Martin Fencl
Dept. of Hydraulics and Hydrology, Czech Technical University in Prague, Prague, Czech Republic
Vojtěch Bareš
Dept. of Hydraulics and Hydrology, Czech Technical University in Prague, Prague, Czech Republic
Related authors
Anna Špačková, Martin Fencl, and Vojtěch Bareš
Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, https://doi.org/10.5194/amt-16-3865-2023, 2023
Short summary
Short summary
Commercial microwave links as rainfall sensors have been investigated and evaluated in numerous studies with gauge-adjusted radar used for reference for rainfall observations. We evaluate collocated commercial microwave links, which are thus exposed to identical atmospheric conditions. This set-up enables the exploration of inconsistencies in observations of independent sensors using data from a real telecommunication network. The sensors are in agreement and are homogeneous in their behaviour.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Martin Fencl and Marc Schleiss
Atmos. Meas. Tech., 18, 4467–4482, https://doi.org/10.5194/amt-18-4467-2025, https://doi.org/10.5194/amt-18-4467-2025, 2025
Short summary
Short summary
A novel disaggregation algorithm for commercial microwave links (CMLs), named CLEAR (CML Segments with Equal Amounts of Rain), is proposed. CLEAR utilizes a multiplicative random cascade generator to control the splitting of link segments. The evaluation performed both on virtual and real CML data shows that CLEAR outperforms a commonly used benchmark algorithm. Moreover, the stochastic nature of CLEAR allows it to represent uncertainty as an ensemble of rain rate distributions along CML paths.
Anna Špačková, Martin Fencl, and Vojtěch Bareš
Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, https://doi.org/10.5194/amt-16-3865-2023, 2023
Short summary
Short summary
Commercial microwave links as rainfall sensors have been investigated and evaluated in numerous studies with gauge-adjusted radar used for reference for rainfall observations. We evaluate collocated commercial microwave links, which are thus exposed to identical atmospheric conditions. This set-up enables the exploration of inconsistencies in observations of independent sensors using data from a real telecommunication network. The sensors are in agreement and are homogeneous in their behaviour.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Cited articles
Berne, A. and Uijlenhoet, R.: Path-averaged rainfall estimation using microwave links: Uncertainty due to spatial rainfall variability, Geophys. Res. Lett., 34, L07403,https://doi.org/10.1029/2007GL029409, 2007. a, b
Cazzaniga, G., De Michele, C., D'Amico, M., Deidda, C., Ghezzi, A., and Nebuloni, R.: Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment, Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, 2022. a
CHMI: Typizace povětrnostních situací pro území České republiky: https://www.chmi.cz/historicka-data/pocasi/typizace-povetrnostnich-situaci, last access: 13 February 2024. a
Chwala, C. and Kunstmann, H.: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges, WIREs Water, 6, e1337, https://doi.org/10.1002/wat2.1337, 2019. a
Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991–999, https://doi.org/10.5194/amt-9-991-2016, 2016. a
Darscheid, P., Guthke, A., and Ehret, U.: A maximum entropy method to estimate discrete distributions from samples ensuring nonzero probabilities, Entropy, 20, 601, https://doi.org/10.5445/IR/1000085954, 2018. a, b
David, N., Alpert, P., and Messer, H.: Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements, Atmos. Chem. Phys., 9, 2413–2418, https://doi.org/10.5194/acp-9-2413-2009, 2009. a
Djibo, M., Chwala, C., Graf, M., Polz, J., Kunstmann, H., and Zougmoré, F.: High-Resolution Rainfall Maps from Commercial Microwave Links for a Data-Scarce Region in West Africa, J. Hydrometeor., 24, 1847–1861, https://doi.org/10.1175/JHM-D-23-0015.1, 2023. a
Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V.: Gauge-adjusted rainfall estimates from commercial microwave links, Hydrol. Earth Syst. Sci., 21, 617–634, https://doi.org/10.5194/hess-21-617-2017, 2017. a
Fencl, M., Dohnal, M., Valtr, P., Grabner, M., and Bareš, V.: Atmospheric observations with E-band microwave links – challenges and opportunities, Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020, 2020. a
Foroozand, H. and Weijs, S. V.: Objective functions for information-theoretical monitoring network design: what is “optimal”?, Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021, 2021. a
Gong, W., Gupta, H. V., Yang, D., Sricharan, K., and Hero III, A. O.: Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach, Water Resour. Res., 49, 2253–2273, https://doi.org/10.1002/wrcr.20161, 2013. a
Graf, M., Chwala, C., Polz, J., and Kunstmann, H.: Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data, Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, 2020. a, b, c, d
Graf, M., Chwala, C., Wenzel, M., Vogel, C., Kunstmann, H., and Winterrath, T.: The new real-time radar-gauge-CML adjustment system pyRADMAN at DWD, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12890, https://doi.org/10.5194/egusphere-egu24-12890, 2024. a
Heistermann, M., Jacobi, S., and Pfaff, T.: Technical Note: An open source library for processing weather radar data (wradlib), Hydrol. Earth Syst. Sci., 17, 863–871, https://doi.org/10.5194/hess-17-863-2013, 2013. a
Imhoff, R. O., Overeem, A., Brauer, C. C., Leijnse, H., Weerts, A. H., and Uijlenhoet, R.: Rainfall nowcasting using commercial microwave links, Geophys. Res. Lett., 47, e2020GL089365, https://doi.org/10.1029/2020GL089365, 2020. a
ITU-R: Radio-frequency channel arrangements for fixed service systems (Recommendation F.746-5), ITU-R, Geneva, Switzerland, https://www.itu.int/rec/R-REC-F.746-5-200105-S/en (last access: 10 October 2024), 2001. a
ITU-R: Handbook – Radiowave propagation information for designing terrestrial point-to-point links, ITU, Geneva, Switzerland, http://handle.itu.int/11.1002/pub/80301443-en, 2009. a
Kullback, S. and Leibler, R. A.: On information and sufficiency, Ann. Math. Stat., 22, 79–86, 1951. a
Leijnse, H., Uijlenhoet, R., and Stricker, J.: Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation, Advances in Water Resources, 31, 1481–1493, https://doi.org/10.1016/j.advwatres.2008.03.004, 2008. a
Leijnse, H., Uijlenhoet, R., and Berne, A.: Errors and Uncertainties in Microwave Link Rainfall Estimation Explored Using Drop Size Measurements and High-Resolution Radar Data, Journal of Hydrometeorology, 11, 1330–1344, https://doi.org/10.1175/2010JHM1243.1, 2010. a
Liu, D., Wang, D., Wang, Y., Wu, J., Singh, V. P., Zeng, X., Wang, L., Chen, Y., Chen, X., Zhang, L., and Gu, S.: Entropy of hydrological systems under small samples: uncertainty and variability, J. Hydrol., 532, 163–176, https://doi.org/10.1016/j.jhydrol.2015.11.019, 2016. a
Loritz, R., Gupta, H., Jackisch, C., Westhoff, M., Kleidon, A., Ehret, U., and Zehe, E.: On the dynamic nature of hydrological similarity, Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, 2018. a
Messer H., Zinevich A., and Alpert P.: Environmental monitoring by wireless communication networks, Science, 312, 713–713, https://doi.org/10.1126/science.1120034, 2006. a
Mishra, A. K., Özger, M., and Singh, V. P.: An entropy-based investigation into the variability of precipitation, J. Hydrol., 370, 139–154, https://doi.org/10.1016/j.jhydrol.2009.03.006, 2009. a
Neuper, M. and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and information-based approach, Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, 2019. a, b
Olsen, R., Rogers, D., and Hodge, D.: The aRb relation in the calculation of rain attenuation, IEEE T. Anten. Propag., 26, 318–329, https://doi.org/10.1109/TAP.1978.1141845, 1978. a
Ostrometzky, J. and Messer, H.: Dynamic determination of the baseline level in microwave links for rain monitoring from minimum attenuation values, IEEE J. Sel. Top. Appl., 11, 24–33, https://doi.org/10.1109/JSTARS.2017.2752902, 2018. a
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Measuring urban rainfall using microwave links from commercial cellular communication networks, Water Resources Research, 47, https://doi.org/10.1029/2010WR010350, 2011. a
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Country-wide rainfall maps from cellular communication networks, Proc. Natl. Acad. Sci., 110, 2741–2745, https://doi.org/10.1073/pnas.1217961110, 2013. a
Overeem, A., Leijnse, H., and Uijlenhoet, R.: Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network, Atmos. Meas. Tech., 9, 2425–2444, https://doi.org/10.5194/amt-9-2425-2016, 2016. a
Pastorek, J., Fencl, M., and Bareš, V.: Calibrating microwave link rainfall retrieval model using runoff observations, EGU General Assembly 2019, 7-12 April 2019, Geophysical Research Abstracts, 21, EGU2019-10072, https://meetingorganizer.copernicus.org/EGU2019/EGU2019-10072.pdf (last access: 1 December 2024), 2019. a
Pastorek, J., Fencl, M., Rieckermann, J., and Bareš, V.: Precipitation estimates from commercial microwave links: Practical approaches to wet-antenna correction, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9, https://doi.org/10.1109/TGRS.2021.3110004, 2022. a, b
Pastorek, J., Fencl, M., and Bareš, V.: Uncertainties in discharge predictions based on microwave link rainfall estimates in a small urban catchment, J. Hydrol., 617, 129051, https://doi.org/10.1016/j.jhydrol.2022.129051, 2023. a
Pendergrass, A. G. and Hartmann, D. L.: Two modes of change of the distribution of rain, J. Climate, 27, 8357–8371, https://doi.org/10.1175/JCLI-D-14-00182.1, 2014. a
Polz, J., Chwala, C., Graf, M., and Kunstmann, H.: Rain event detection in commercial microwave link attenuation data using convolutional neural networks, Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020, 2020. a
Rios Gaona, M. F., Overeem, A., Brasjen, A. M., Meirink, J. F., Leijnse, H., and Uijlenhoet, R.: Evaluation of rainfall products derived from satellites and microwave links for the Netherlands, IEEE T. Geosci. Remote, 55, 12, 6849–6859, https://doi.org/10.1109/TGRS.2017.2735439, 2017. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis: The Primer, John Wiley and Sons, Hoboken, New Jersey, 292 pp., https://doi.org/10.1002/9780470725184, 2008. a
Schleiss, M. and Berne A.: Identification of Dry and Rainy Periods Using Telecommunication Microwave Links, IEEE Geoscience and Remote Sensing Letters, 7, 611–615, https://doi.org/10.1109/LGRS.2010.2043052, 2010. a, b, c, d
Schleiss, M., Rieckermann, J., and Berne, A.: Quantification and modeling of wet-antenna attenuation for commercial microwave links, in IEEE Geoscience and Remote Sensing Letters, 10, 5, 1195–1199, https://doi.org/10.1109/LGRS.2012.2236074, 2013. a
Schleiss, M., Olsson, J., Berg, P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Ellerbæk Nielsen, J., Bozhinova, D., and Pulkkinen, S.: The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden, Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, 2020. a, b
Schleiss, M., Raupach, T. H., and Berne, A.: The raindrop size distribution – the unknown that holds everything together, in Advances in Weather Radar, Volume 2: Precipitation Science, Scattering and Processing Algorithms, edited by: Bringi, V. N., Mishra, K. V., and Thurai, M., Institution of Engineering and Technology, 247–292, https://doi.org/10.1049/sbra557g_ch6, 2023. a
Singh, V. P.: Entropy theory and its application in environmental and water engineering, John Wiley & Sons, Chichester, West Sussex, UK, ISBN 978-1-119-97656-1, 2013. a
Šlerka, J. and Šisler, V.: Who is shaping your agenda? Social network analysis of anti-Islam and anti-immigration movement audiences on Czech facebook, in: Expressions of radicalization, edited by: Steiner, K. and Önnerfors, A., Palgrave Macmillan, Cham, Germany, 61–85, https://doi.org/10.1007/978-3-319-65566-6_3, 2018. a
Špačková, A., Fencl, M., and Bareš, V.: Evaluation of error components in rainfall retrieval from collocated commercial microwave links, Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, 2023. a, b
Steuer, R., Kurths, J., Daub, C. O., Weise, J., and Selbig, J.: The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics, 18, 2, S231–S240, https://doi.org/10.1093/bioinformatics/18.suppl_2.S231, 2002. a
Uda, S.: Application of information theory in systems biology, Biophysical Reviews, 12, 377–384, https://doi.org/10.1007/s12551-020-00665-w, 2020. a
Uijlenhoet, R., Overeem, A., and Leijnse, H.: Opportunistic remote sensing of rainfall using microwave links from cellular communication networks, Wires Water, 5, e1289, https://doi.org/10.1002/wat2.1289, 2018. a
van het Schip, T. I., Overeem, A., Leijnse, H., Uijlenhoet, R., Meirink, J. F., and van Delden, A. J.: Rainfall measurement using cell phone links: classification of wet and dry periods using geostationary satellites, Hydrol. Sci. J., 62, 1343–1353, https://doi.org/10.1080/02626667.2017.1329588, 2017. a
van Leth, T. C., Leijnse, H., Overeem, A., and Uijlenhoet, R.: Estimating raindrop size distributions using microwave link measurements: potential and limitations, Atmos. Meas. Tech., 13, 1797–1815, https://doi.org/10.5194/amt-13-1797-2020, 2020. a
Walraven, B., Overeem, A., Leijnse, H., Coenders, M., Hut, R., van der Valk, L., and Uijlenhoet, R.: Considering local network characteristics and environmental conditions improves rainfall estimates from commercial microwave links in Sri Lanka, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-9544, https://doi.org/10.5194/egusphere-egu22-9544, 2022. a
Weiss, T., Routtenberg, T., Ostrometzky, J., and Messer, H.: Intensity estimation after detection for accumulated rainfall estimation, Front. Sig. Proc., 4, 1291878, https://doi.org/10.3389/frsip.2024.1291878, 2024. a
Short summary
This study uses information theory to enhance rainfall retrieval from attenuation data of commercial microwave links (CML). The framework enables evaluation of the performance of CMLs as rainfall sensors in a probabilistic manner and assessment of information content of an arbitrary variable for the rainfall retrieval, e.g. synoptic type. The study shows that using the information theory concept can also directly improve data processing of attenuation data, in this case dry-wet classification.
This study uses information theory to enhance rainfall retrieval from attenuation data of...