Articles | Volume 18, issue 23
https://doi.org/10.5194/amt-18-7513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-7513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Squeezing turbulence statistics out of a pulsed Doppler lidar
DTU Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Lidar Division, Lumibird SA, Lannion, France
Jakob Mann
DTU Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Mikael Sjöholm
DTU Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
Guillaume Léa
Lidar Division, Lumibird SA, Lannion, France
Guillaume Gorju
Lidar Division, Lumibird SA, Lannion, France
Related authors
Abdul Haseeb Syed, Jakob Mann, and Mohammadreza Manami
EGUsphere, https://doi.org/10.5194/egusphere-2025-5214, https://doi.org/10.5194/egusphere-2025-5214, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a new structure function model to estimate the turbulence energy dissipation rate using lidar velocities. The model corrects for turbulence filtering due to the lidar probe volume by applying a Gaussian weighting function. By utilizing the high 3 m range-gate resolution of the BEAM 6x pulsed lidar, we achieve excellent agreement between turbulence energy dissipation rate values derived from lidar and sonic anemometer at three heights, with correlation coefficients exceeding 0.9.
Mohammadreza Manami, Guillaume Léa, Jakob Mann, Mikael Sjöholm, and Guillaume Gorju
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-165, https://doi.org/10.5194/wes-2025-165, 2025
Preprint under review for WES
Short summary
Short summary
A simple adaptive variant of the Doppler Beam Swinging (DBS) method is presented to improve the availability of wind velocity measurements in profiling lidars, particularly at higher altitudes. Following validation at the Østerild test site in Denmark, using three profiling lidars compared with cup anemometers and wind vanes, excellent agreement was observed. Availability assessments indicated a maximum increase of 16.9 percentage points over the standard approach.
Shokoufeh Malekmohammadi, Etienne Cheynet, Joachim Reuder, Claus Linnemann, Mikael Sjöholm, Jakob Mann, and Gregor Giebel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3148, https://doi.org/10.5194/egusphere-2025-3148, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper presents a novel measurement technique for long-term, high-temporal resolution wind velocity observations in offshore wind farms, while also addressing the need for spatial coverage. The approach involves the deployment of a ship-based lidar system consisting of two co-located lidars on a vessel. This strategy is designed to enable a detailed assessment of vertical wind velocity within and around offshore wind farms.
Abdul Haseeb Syed, Jakob Mann, and Mohammadreza Manami
EGUsphere, https://doi.org/10.5194/egusphere-2025-5214, https://doi.org/10.5194/egusphere-2025-5214, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a new structure function model to estimate the turbulence energy dissipation rate using lidar velocities. The model corrects for turbulence filtering due to the lidar probe volume by applying a Gaussian weighting function. By utilizing the high 3 m range-gate resolution of the BEAM 6x pulsed lidar, we achieve excellent agreement between turbulence energy dissipation rate values derived from lidar and sonic anemometer at three heights, with correlation coefficients exceeding 0.9.
Mohammadreza Manami, Guillaume Léa, Jakob Mann, Mikael Sjöholm, and Guillaume Gorju
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-165, https://doi.org/10.5194/wes-2025-165, 2025
Preprint under review for WES
Short summary
Short summary
A simple adaptive variant of the Doppler Beam Swinging (DBS) method is presented to improve the availability of wind velocity measurements in profiling lidars, particularly at higher altitudes. Following validation at the Østerild test site in Denmark, using three profiling lidars compared with cup anemometers and wind vanes, excellent agreement was observed. Availability assessments indicated a maximum increase of 16.9 percentage points over the standard approach.
Isadora L. Coimbra, Jakob Mann, José M. L. M. Palma, and Vasco T. P. Batista
Atmos. Meas. Tech., 18, 287–303, https://doi.org/10.5194/amt-18-287-2025, https://doi.org/10.5194/amt-18-287-2025, 2025
Short summary
Short summary
Dual-lidar measurements are explored here as a cost-effective alternative for measuring the wind at great heights. From measurements at a mountainous site, we showed that this methodology can accurately capture mean wind speeds and turbulence under different flow conditions, and we recommended optimal lidar placement and sampling rates. This methodology allows the construction of vertical wind profiles up to 430 m, surpassing traditional meteorological mast heights and single-lidar capabilities.
Abdul Haseeb Syed and Jakob Mann
Wind Energ. Sci., 9, 1381–1391, https://doi.org/10.5194/wes-9-1381-2024, https://doi.org/10.5194/wes-9-1381-2024, 2024
Short summary
Short summary
Wind flow consists of swirling patterns of air called eddies, some as big as many kilometers across, while others are as small as just a few meters. This paper introduces a method to simulate these large swirling patterns on a flat grid. Using these simulations we can better figure out how these large eddies affect big wind turbines in terms of loads and forces.
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024, https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Short summary
Three-dimensional wind fields can be accurately measured by sonic anemometers. However, the traditional mast-mounted sonic anemometers are not flexible in various applications, which can be potentially overcome by drones. Therefore, we conducted a proof-of-concept study by applying three continuous-wave Doppler lidars to characterize the complex flow around a drone to validate the results obtained by CFD simulations. Both methods show good agreement, with a velocity difference of 0.1 m s-1.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Nikolas Angelou, Jakob Mann, and Camille Dubreuil-Boisclair
Wind Energ. Sci., 8, 1511–1531, https://doi.org/10.5194/wes-8-1511-2023, https://doi.org/10.5194/wes-8-1511-2023, 2023
Short summary
Short summary
This study presents the first experimental investigation using two nacelle-mounted wind lidars that reveal the upwind and downwind conditions relative to a full-scale floating wind turbine. We find that in the case of floating wind turbines with small pitch and roll oscillating motions (< 1°), the ambient turbulence is the main driving factor that determines the propagation of the wake characteristics.
Wei Fu, Alessandro Sebastiani, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 8, 677–690, https://doi.org/10.5194/wes-8-677-2023, https://doi.org/10.5194/wes-8-677-2023, 2023
Short summary
Short summary
Nacelle lidars with different beam scanning locations and two types of systems are considered for inflow turbulence estimations using both numerical simulations and field measurements. The turbulence estimates from a sonic anemometer at the hub height of a Vestas V52 turbine are used as references. The turbulence parameters are retrieved using the radial variances and a least-squares procedure. The findings from numerical simulations have been verified by the analysis of the field measurements.
Abdul Haseeb Syed, Jakob Mann, Andreas Platis, and Jens Bange
Wind Energ. Sci., 8, 125–139, https://doi.org/10.5194/wes-8-125-2023, https://doi.org/10.5194/wes-8-125-2023, 2023
Short summary
Short summary
Wind turbines extract energy from the incoming wind flow, which needs to be recovered. In very large offshore wind farms, the energy is recovered mostly from above the wind farm in a process called entrainment. In this study, we analyzed the effect of atmospheric stability on the entrainment process in large offshore wind farms using measurements recorded by a research aircraft. This is the first time that in situ measurements are used to study the energy recovery process above wind farms.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Wei Fu, Alfredo Peña, and Jakob Mann
Wind Energ. Sci., 7, 831–848, https://doi.org/10.5194/wes-7-831-2022, https://doi.org/10.5194/wes-7-831-2022, 2022
Short summary
Short summary
Measuring the variability of the wind is essential to operate the wind turbines safely. Lidars of different configurations have been placed on the turbines’ nacelle to measure the inflow remotely. This work found that the multiple-beam lidar is the only one out of the three employed nacelle lidars that can give detailed information about the inflow variability. The other two commercial lidars, which have two and four beams, respectively, measure only the fluctuation in the along-wind direction.
Nikolas Angelou, Jakob Mann, and Ebba Dellwik
Atmos. Chem. Phys., 22, 2255–2268, https://doi.org/10.5194/acp-22-2255-2022, https://doi.org/10.5194/acp-22-2255-2022, 2022
Short summary
Short summary
In this study we use state-of-the-art scanning wind lidars to investigate the wind field in the near-wake region of a mature, open-grown tree. Our measurements provide for the first time a picture of the mean and the turbulent spatial fluctuations in the flow in the wake of a tree in its natural environment. Our observations support the hypothesis that even simple models can realistically simulate the turbulent fluctuations in the wake and thus predict the effect of trees in flow models.
Pedro Santos, Jakob Mann, Nikola Vasiljević, Elena Cantero, Javier Sanz Rodrigo, Fernando Borbón, Daniel Martínez-Villagrasa, Belén Martí, and Joan Cuxart
Wind Energ. Sci., 5, 1793–1810, https://doi.org/10.5194/wes-5-1793-2020, https://doi.org/10.5194/wes-5-1793-2020, 2020
Short summary
Short summary
This study presents results from the Alaiz experiment (ALEX17), featuring the characterization of two cases with flow features ranging from 0.1 to 10 km in complex terrain. We show that multiple scanning lidars can capture in detail a type of atmospheric wave that can happen up to 10 % of the time at this site. The results are in agreement with multiple ground observations and demonstrate the role of atmospheric stability in flow phenomena that need to be better captured by numerical models.
Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, p. 295, ISBN 9780486612720, 1972. a
Banakh, V. and Smalikho, I.: Coherent Doppler Wind Lidars in a Turbulent Atmosphere, Artech House Publications, p. 150, ISBN 9781608076680, 2013. a
Brand, A. J., Peinke, J., and Mann, J.: Turbulence and wind turbines, Journal of Physics: Conference Series, 318, 072005, https://doi.org/10.1088/1742-6596/318/7/072005, 2011. a
Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind statistics from average spectrum of continuous-wave lidar, Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, 2013. a
Frehlich, R.: Scanning doppler lidar for input into short-term wind power forecasts, Journal of Atmospheric and Oceanic Technology, 30, 230–244, https://doi.org/10.1175/JTECH-D-11-00117.1, 2013. a
Leica Geosystems AG: Leica MS50/TS50/TM50 User Manual, Switzerland, 805805-3.0.0en, 2015. a
Mandel, L. and Wolf, E.: Optical coherence and quantum optics, Cambridge University Press, p. 41,https://doi.org/10.1017/CBO9781139644105, 1995. a
Mann, J., Cariou, J.-P., Courtney, M. S., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelöw, P., Sjöholm, M., and Enevoldsen, K.: Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer, IOP Conference Series: Earth and Environmental Science, 1, 012012, https://doi.org/10.1088/1755-1315/1/1/012012, 2008. a
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization, The Computer Journal, 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965. a
Nocedal, J. and Wright, S. J.: Derivative-Free Optimization, Springer New York, New York, NY, ISBN 978-0-387-40065-5, https://doi.org/10.1007/978-0-387-40065-5_9, 2006. a
Puccioni, M. and Iungo, G. V.: Spectral correction of turbulent energy damping on wind lidar measurements due to spatial averaging, Atmos. Meas. Tech., 14, 1457–1474, https://doi.org/10.5194/amt-14-1457-2021, 2021. a
Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmos. Meas. Tech., 6, 3147–3167, https://doi.org/10.5194/amt-6-3147-2013, 2013. a
Sathe, A., Mann, J., Gottschall, J., and Courtney, M. S.: Can Wind Lidars Measure Turbulence?, Journal of Atmospheric and Oceanic Technology, 28, 853–868, https://doi.org/10.1175/JTECH-D-10-05004.1, 2011. a
Sathe, A., Mann, J., Vasiljevic, N., and Lea, G.: A six-beam method to measure turbulence statistics using ground-based wind lidars, Atmos. Meas. Tech., 8, 729–740, https://doi.org/10.5194/amt-8-729-2015, 2015. a
van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., Ferreira, C., van Wingerden, J. W., Schlipf, D., Gebraad, P., Polinder, H., Abrahamsen, A., van Bussel, G. J. W., Sørensen, J. D., Tavner, P., Bottasso, C. L., Muskulus, M., Matha, D., Lindeboom, H. J., Degraer, S., Kramer, O., Lehnhoff, S., Sonnenschein, M., Sørensen, P. E., Künneke, R. W., Morthorst, P. E., and Skytte, K.: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy, Wind Energ. Sci., 1, 1–39, https://doi.org/10.5194/wes-1-1-2016, 2016. a
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., and Wiser, R.: Grand challenges in the science of wind energy, Science, 366, eaau2027, https://doi.org/10.1126/science.aau2027, 2019. a
Zrnic, D. S.: Estimation of Spectral Moments for Weather Echoes, IEEE Transactions on Geoscience Electronics, 17, 113–128, https://doi.org/10.1109/TGE.1979.294638, 1979. a
Short summary
This research investigates a novel method for directly estimating wind velocity variances from averaged Doppler spectra in the frequency domain. Compared to the conventional time-domain approach, the proposed method offers a substantial improvement. Despite some limitations, this study marks a significant advancement in turbulence estimation using pulsed Doppler lidars, which presents promising potential for wind turbine load assessments.
This research investigates a novel method for directly estimating wind velocity variances from...