Articles | Volume 18, issue 24
https://doi.org/10.5194/amt-18-7865-2025
https://doi.org/10.5194/amt-18-7865-2025
Research article
 | Highlight paper
 | 
22 Dec 2025
Research article | Highlight paper |  | 22 Dec 2025

A system for analysis of H2 and Ne in polar ice core samples

Eric S. Saltzman, Miranda H. Miranda, John D. Patterson, and Murat Aydin

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-3587', Anonymous Referee #1, 15 Sep 2025
  • RC2: 'Comment on egusphere-2025-3587', Anonymous Referee #2, 21 Sep 2025

Peer review completion

AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
AR by Eric Saltzman on behalf of the Authors (13 Nov 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (15 Nov 2025) by Mingjin Tang
AR by Eric Saltzman on behalf of the Authors (03 Dec 2025)
Download
Executive editor
Accurately projecting atmospheric levels and climate impacts of H2 requires knowledge of its biogeochemistry on time scales longer than the modern instrumental record. H2 trapped in polar ice is a potential archive for atmospheric H2 on millennial time scales, but ice core records of H2 do not exist because its high permeability in ice causes ice cores to rapidly exchange with the modern atmosphere. This work presents an analytical system capable of measuring H2 and neon in polar ice cores in the field immediately after drilling. This method has enabled the first ice core record of H2, and may help us better understand atmospheric H2 levels in the past.
Short summary
This study describes a system for analysis of hydrogen (H2) and neon (Ne) in polar ice core samples in the field immediately after drilling. The motivation is to reconstruct the atmospheric history of H2 to improve understanding of global H2 biogeochemistry and how it has varied over time. This knowledge will help inform models used to project future atmospheric levels of H2 and assess the climate impacts of widespread utilization of H2 as an energy source.
Share