Articles | Volume 7, issue 4
Atmos. Meas. Tech., 7, 877–886, 2014
https://doi.org/10.5194/amt-7-877-2014
Atmos. Meas. Tech., 7, 877–886, 2014
https://doi.org/10.5194/amt-7-877-2014
Research article
04 Apr 2014
Research article | 04 Apr 2014

Inversion of droplet aerosol analyzer data for long-term aerosol–cloud interaction measurements

M. I. A. Berghof et al.

Related authors

Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling
S. Sjogren, G. P. Frank, M. I. A. Berghof, and B. G. Martinsson
Atmos. Meas. Tech., 6, 349–357, https://doi.org/10.5194/amt-6-349-2013,https://doi.org/10.5194/amt-6-349-2013, 2013

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021,https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary
Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021,https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Clouds over Hyytiälä, Finland: an algorithm to classify clouds based on solar radiation and cloud base height measurements
Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova
Atmos. Meas. Tech., 13, 5595–5619, https://doi.org/10.5194/amt-13-5595-2020,https://doi.org/10.5194/amt-13-5595-2020, 2020
Short summary
A convolutional neural network for classifying cloud particles recorded by imaging probes
Georgios Touloupas, Annika Lauber, Jan Henneberger, Alexander Beck, and Aurélien Lucchi
Atmos. Meas. Tech., 13, 2219–2239, https://doi.org/10.5194/amt-13-2219-2020,https://doi.org/10.5194/amt-13-2219-2020, 2020
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Anderson, T. L., Charlson, R. J., and Covert, D. S.: Calibration of a Counterflow Virtual Impactor at Aerodynamic Diameters from 1 to 15 μm, Aerosol Sci. Technol., 19, 317–329, https://doi.org/10.1080/02786829308959639, 1993.
Belyaev, S. and Levin, L.: Techniques for collection of representative aerosol samples, J. Aerosol Sci., 5, 325–338, 1974.
Draxler, R. and Rolph, G.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website http://ready.arl.noaa.gov/HYSPLIT.php, NOAA Air Resources Laboratory, Silver Spring, MD, 2013.
Download