Articles | Volume 8, issue 5
https://doi.org/10.5194/amt-8-2173-2015
https://doi.org/10.5194/amt-8-2173-2015
Research article
 | 
22 May 2015
Research article |  | 22 May 2015

Quality-based generation of weather radar Cartesian products

K. Ośródka and J. Szturc

Related authors

Adaptation of RainGaugeQC algorithms for quality control of rain gauge data from professional and non-professional measurement networks
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-204,https://doi.org/10.5194/amt-2024-204, 2025
Revised manuscript accepted for AMT
Short summary
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023,https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Automatic quality control of telemetric rain gauge data providing quantitative quality information (RainGaugeQC)
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022,https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Improvement in algorithms for quality control of weather radar data (RADVOL-QC system)
Katarzyna Ośródka and Jan Szturc
Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022,https://doi.org/10.5194/amt-15-261-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025,https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025,https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025,https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary
Gravity waves above the northern Atlantic and Europe during streamer events using Aeolus
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025,https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Observations of tall-building wakes using a scanning Doppler lidar
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025,https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary

Cited articles

Einfalt, T. and Michaelides, S.: Quality control of precipitation data, in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S., Springer Verlag, Berlin – Heidelberg, 101–126, 2008.
Einfalt, T., Szturc, J., and O\'sródka, K.: The quality index for radar precipitation data: a tower of Babel?, Atmos. Sci. Let., 11, 139–144, https://doi.org/10.1002/asl.271, 2010.
Elo, C. A.: Correcting and quantifying radar data, Met.no report, 2/2012, 34 pp., 2012.
Fornasiero, A., Alberoni, P. P., Amorati, R., Ferraris, L., and Taramasso, A. C.: Effects of propagation conditions on radar beam-ground interaction: impact on data quality, Adv. Geosci., 2, 201–208, https://doi.org/10.5194/adgeo-2-201-2005, 2005.
Germann, U. and Joss, J.: Operational measurement of precipitation in mountainous terrain, in: Weather Radar: Principles and Advanced Applications, edited by: Meischner, P., Springer Verlag, Berlin – Heidelberg, 52–77, 2004.
Download
Short summary
Weather radar data are processed to obtain various 2D products. In this research, an algorithm of interpolation of polar reflectivity data with respect to quality index (QI) data is applied to find the Cartesian reflectivity as PPI products and generate a corresponding QI field. On this basis, quality-based algorithms for the generation of the standard products have been developed: ETOP, MAX, and VIL. Moreover a detection of convection has been defined as a specific combination of the products.
Share