Articles | Volume 8, issue 5
https://doi.org/10.5194/amt-8-2173-2015
https://doi.org/10.5194/amt-8-2173-2015
Research article
 | 
22 May 2015
Research article |  | 22 May 2015

Quality-based generation of weather radar Cartesian products

K. Ośródka and J. Szturc

Related authors

Adaptation of RainGaugeQC algorithms for quality control of rain gauge data from professional and non-professional measurement networks
Katarzyna Ośródka, Jan Szturc, Anna Jurczyk, and Agnieszka Kurcz
Atmos. Meas. Tech., 18, 3229–3245, https://doi.org/10.5194/amt-18-3229-2025,https://doi.org/10.5194/amt-18-3229-2025, 2025
Short summary
Can we reliably estimate precipitation with high resolution during disastrously large floods?
Jan Szturc, Anna Jurczyk, Katarzyna Ośródka, Agnieszka Kurcz, Magdalena Szaton, Mariusz Figurski, and Robert Pyrc
EGUsphere, https://doi.org/10.5194/egusphere-2025-1863,https://doi.org/10.5194/egusphere-2025-1863, 2025
Short summary
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023,https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Automatic quality control of telemetric rain gauge data providing quantitative quality information (RainGaugeQC)
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022,https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Improvement in algorithms for quality control of weather radar data (RADVOL-QC system)
Katarzyna Ośródka and Jan Szturc
Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022,https://doi.org/10.5194/amt-15-261-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Propagating information content: an example with advection
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025,https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Best estimate of the planetary boundary layer height from multiple remote sensing measurements
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025,https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025,https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025,https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary
Observed impact of the GNSS clock data rate on radio occultation bending angles for Sentinel-6A and COSMIC-2
Sebastiano Padovan, Axel von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscan, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech., 18, 3217–3228, https://doi.org/10.5194/amt-18-3217-2025,https://doi.org/10.5194/amt-18-3217-2025, 2025
Short summary

Cited articles

Einfalt, T. and Michaelides, S.: Quality control of precipitation data, in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S., Springer Verlag, Berlin – Heidelberg, 101–126, 2008.
Einfalt, T., Szturc, J., and O\'sródka, K.: The quality index for radar precipitation data: a tower of Babel?, Atmos. Sci. Let., 11, 139–144, https://doi.org/10.1002/asl.271, 2010.
Elo, C. A.: Correcting and quantifying radar data, Met.no report, 2/2012, 34 pp., 2012.
Fornasiero, A., Alberoni, P. P., Amorati, R., Ferraris, L., and Taramasso, A. C.: Effects of propagation conditions on radar beam-ground interaction: impact on data quality, Adv. Geosci., 2, 201–208, https://doi.org/10.5194/adgeo-2-201-2005, 2005.
Germann, U. and Joss, J.: Operational measurement of precipitation in mountainous terrain, in: Weather Radar: Principles and Advanced Applications, edited by: Meischner, P., Springer Verlag, Berlin – Heidelberg, 52–77, 2004.
Download
Short summary
Weather radar data are processed to obtain various 2D products. In this research, an algorithm of interpolation of polar reflectivity data with respect to quality index (QI) data is applied to find the Cartesian reflectivity as PPI products and generate a corresponding QI field. On this basis, quality-based algorithms for the generation of the standard products have been developed: ETOP, MAX, and VIL. Moreover a detection of convection has been defined as a specific combination of the products.
Share