Articles | Volume 8, issue 5
https://doi.org/10.5194/amt-8-2173-2015
https://doi.org/10.5194/amt-8-2173-2015
Research article
 | 
22 May 2015
Research article |  | 22 May 2015

Quality-based generation of weather radar Cartesian products

K. Ośródka and J. Szturc

Related authors

Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023,https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Automatic quality control of telemetric rain gauge data providing quantitative quality information (RainGaugeQC)
Katarzyna Ośródka, Irena Otop, and Jan Szturc
Atmos. Meas. Tech., 15, 5581–5597, https://doi.org/10.5194/amt-15-5581-2022,https://doi.org/10.5194/amt-15-5581-2022, 2022
Short summary
Improvement in algorithms for quality control of weather radar data (RADVOL-QC system)
Katarzyna Ośródka and Jan Szturc
Atmos. Meas. Tech., 15, 261–277, https://doi.org/10.5194/amt-15-261-2022,https://doi.org/10.5194/amt-15-261-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024,https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary

Cited articles

Einfalt, T. and Michaelides, S.: Quality control of precipitation data, in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S., Springer Verlag, Berlin – Heidelberg, 101–126, 2008.
Einfalt, T., Szturc, J., and O\'sródka, K.: The quality index for radar precipitation data: a tower of Babel?, Atmos. Sci. Let., 11, 139–144, https://doi.org/10.1002/asl.271, 2010.
Elo, C. A.: Correcting and quantifying radar data, Met.no report, 2/2012, 34 pp., 2012.
Fornasiero, A., Alberoni, P. P., Amorati, R., Ferraris, L., and Taramasso, A. C.: Effects of propagation conditions on radar beam-ground interaction: impact on data quality, Adv. Geosci., 2, 201–208, https://doi.org/10.5194/adgeo-2-201-2005, 2005.
Germann, U. and Joss, J.: Operational measurement of precipitation in mountainous terrain, in: Weather Radar: Principles and Advanced Applications, edited by: Meischner, P., Springer Verlag, Berlin – Heidelberg, 52–77, 2004.
Download
Short summary
Weather radar data are processed to obtain various 2D products. In this research, an algorithm of interpolation of polar reflectivity data with respect to quality index (QI) data is applied to find the Cartesian reflectivity as PPI products and generate a corresponding QI field. On this basis, quality-based algorithms for the generation of the standard products have been developed: ETOP, MAX, and VIL. Moreover a detection of convection has been defined as a specific combination of the products.