Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 12
Atmos. Meas. Tech., 8, 5315–5324, 2015
https://doi.org/10.5194/amt-8-5315-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 5315–5324, 2015
https://doi.org/10.5194/amt-8-5315-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Dec 2015

Research article | 21 Dec 2015

An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

S. L. Pathirana, C. van der Veen, M. E. Popa, and T. Röckmann S. L. Pathirana et al.
  • Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands

Abstract. A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol−1, or 1–3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol−1 for 100 mL of ambient air (185.4 nmol mol−1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

Publications Copernicus
Download
Short summary
CO is established as an important indirect greenhouse gas, as it is the major sink for the OH∙. We have developed a fully automated system for the determination of δ13C and δ18O in atmospheric CO. The blank signal of the Schütze reagent is 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The analytical repeatability for the mole fraction is ~0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). A single measurement is performed in 18 min.
CO is established as an important indirect greenhouse gas, as it is the major sink for the...
Citation