Articles | Volume 9, issue 6
https://doi.org/10.5194/amt-9-2633-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-2633-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Differential absorption radar techniques: water vapor retrievals
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Matthew Lebsock
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Nathaniel Livesey
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Simone Tanelli
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Viewed
Total article views: 2,751 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Mar 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,611 | 1,020 | 120 | 2,751 | 102 | 100 |
- HTML: 1,611
- PDF: 1,020
- XML: 120
- Total: 2,751
- BibTeX: 102
- EndNote: 100
Total article views: 2,222 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 21 Jun 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,369 | 735 | 118 | 2,222 | 98 | 95 |
- HTML: 1,369
- PDF: 735
- XML: 118
- Total: 2,222
- BibTeX: 98
- EndNote: 95
Total article views: 529 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Mar 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
242 | 285 | 2 | 529 | 4 | 5 |
- HTML: 242
- PDF: 285
- XML: 2
- Total: 529
- BibTeX: 4
- EndNote: 5
Cited
15 citations as recorded by crossref.
- Water vapor measurements inside clouds and storms using a differential absorption radar L. Millán et al. 10.5194/amt-17-539-2024
- Potential of Dual-Frequency Radar and Microwave Radiometer Synergy for Water Vapor Profiling in the Cloudy Trade Wind Environment S. Schnitt et al. 10.1175/JTECH-D-19-0110.1
- Boundary-layer water vapor profiling using differential absorption radar R. Roy et al. 10.5194/amt-11-6511-2018
- First Airborne Measurements With a G-Band Differential Absorption Radar R. Roy et al. 10.1109/TGRS.2021.3134670
- Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz K. Cooper et al. 10.1109/LGRS.2017.2776078
- G-Band Radar for Humidity and Cloud Remote Sensing K. Cooper et al. 10.1109/TGRS.2020.2995325
- Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward A. Battaglia et al. 10.1029/2019RG000686
- Analysis of Integrated Differential Absorption Radar and Subterahertz Satellite Communications Beyond 6G S. Aliaga et al. 10.1109/JSTARS.2024.3480816
- Assessing surface air pressure sensing using 118 GHz O2-absorption radar system B. Lin et al. 10.1016/j.jqsrt.2020.107425
- Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes R. Roy et al. 10.5194/amt-14-6443-2021
- Validation of a G-Band Differential Absorption Cloud Radar for Humidity Remote Sensing R. Roy et al. 10.1175/JTECH-D-19-0122.1
- Assessment of global total column water vapor sounding using a spaceborne differential absorption radar L. Millán et al. 10.5194/amt-13-5193-2020
- Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds A. Battaglia & P. Kollias 10.5194/amt-12-3335-2019
- Unravelling ice growth characteristics beneath cloud tops with joint analysis of airborne Ka-band radar and Himawari observations S. You et al. 10.1016/j.atmosres.2024.107580
- Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles A. Nehrir et al. 10.1007/s10712-017-9448-9
14 citations as recorded by crossref.
- Water vapor measurements inside clouds and storms using a differential absorption radar L. Millán et al. 10.5194/amt-17-539-2024
- Potential of Dual-Frequency Radar and Microwave Radiometer Synergy for Water Vapor Profiling in the Cloudy Trade Wind Environment S. Schnitt et al. 10.1175/JTECH-D-19-0110.1
- Boundary-layer water vapor profiling using differential absorption radar R. Roy et al. 10.5194/amt-11-6511-2018
- First Airborne Measurements With a G-Band Differential Absorption Radar R. Roy et al. 10.1109/TGRS.2021.3134670
- Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz K. Cooper et al. 10.1109/LGRS.2017.2776078
- G-Band Radar for Humidity and Cloud Remote Sensing K. Cooper et al. 10.1109/TGRS.2020.2995325
- Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward A. Battaglia et al. 10.1029/2019RG000686
- Analysis of Integrated Differential Absorption Radar and Subterahertz Satellite Communications Beyond 6G S. Aliaga et al. 10.1109/JSTARS.2024.3480816
- Assessing surface air pressure sensing using 118 GHz O2-absorption radar system B. Lin et al. 10.1016/j.jqsrt.2020.107425
- Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes R. Roy et al. 10.5194/amt-14-6443-2021
- Validation of a G-Band Differential Absorption Cloud Radar for Humidity Remote Sensing R. Roy et al. 10.1175/JTECH-D-19-0122.1
- Assessment of global total column water vapor sounding using a spaceborne differential absorption radar L. Millán et al. 10.5194/amt-13-5193-2020
- Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds A. Battaglia & P. Kollias 10.5194/amt-12-3335-2019
- Unravelling ice growth characteristics beneath cloud tops with joint analysis of airborne Ka-band radar and Himawari observations S. You et al. 10.1016/j.atmosres.2024.107580
1 citations as recorded by crossref.
Latest update: 06 Jan 2025
Short summary
We discuss the theoretical capabilities of a radar technique to measure profiles of water vapor in cloudy/precipitating areas. The method uses two radar pulses at different frequencies near the 183 GHz H2O absorption line to determine water vapor profiles by measuring the differential absorption on and off the line. Results of inverting synthetic data assuming a satellite radar are presented.
We discuss the theoretical capabilities of a radar technique to measure profiles of water vapor...