Articles | Volume 9, issue 7
Atmos. Meas. Tech., 9, 2989–3008, 2016

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Atmos. Meas. Tech., 9, 2989–3008, 2016

Research article 14 Jul 2016

Research article | 14 Jul 2016

Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products

Jan Douša et al.

Related authors

Sensitivity of GNSS tropospheric gradients to processing options
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446,,, 2019
Short summary
Tropospheric products of the second GOP European GNSS reprocessing (1996–2014)
Jan Dousa, Pavel Vaclavovic, and Michal Elias
Atmos. Meas. Tech., 10, 3589–3607,,, 2017
Short summary
Inter-technique validation of tropospheric slant total delays
Michal Kačmařík, Jan Douša, Galina Dick, Florian Zus, Hugues Brenot, Gregor Möller, Eric Pottiaux, Jan Kapłon, Paweł Hordyniec, Pavel Václavovic, and Laurent Morel
Atmos. Meas. Tech., 10, 2183–2208,,, 2017
EPN-Repro2: A reference GNSS tropospheric data set over Europe
Rosa Pacione, Andrzej Araszkiewicz, Elmar Brockmann, and Jan Dousa
Atmos. Meas. Tech., 10, 1689–1705,,, 2017
Short summary
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406,,, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529,,, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402,,, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69,,, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899,,, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835,,, 2020
Short summary

Cited articles

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015.
Bevis, M., Businger, S., Herring, T. A., Rocken C., Anthes, R. A., and Ware, R. H.: GPS Meteorology: Remote Sensing of Atmospheric Water Vapour Using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken C, and Ware, R. H.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol., 33, 379–386, 1994.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406,, 2006.
Brenot, H., Ducrocq, V., Walpersdorf, A., Champollion, C., and Caumont, O.: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8–9 September 2002 flash flood over southeastern France, J. Geophys. Res., 111, D15105,, 2006.
Short summary
GNSS products provide observations of atmospheric water vapour. Advanced tropospheric products focus on ultra-fast and high-resolution zenith total delays (ZTDs), horizontal gradients and slant delays, all suitable for rapid-cycle numerical weather prediction (NWP) and severe weather event monitoring. The GNSS4SWEC Benchmark provides a complex data set for developing and assessing these products, with initial focus on reference ZTDs and gradients derived from several NWP and dense GNSS networks.