Articles | Volume 9, issue 7
https://doi.org/10.5194/amt-9-2989-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/amt-9-2989-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products
NTIS – New Technologies for the Information Society, Geodetic
Observatory Pecný, RIGTC, 25066 Zdiby, Czech Republic
Galina Dick
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences,
14473 Potsdam, Germany
Michal Kačmařík
Institute of Geoinformatics, VŠB – Technical University of
Ostrava, 70833 Ostrava, Czech Republic
Radmila Brožková
Numerical Wheather Prediction Department, Czech Hydrometerological
Institute, 14306 Prague, Czech Republic
Florian Zus
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences,
14473 Potsdam, Germany
Hugues Brenot
Atmospheric Composition Department, Royal Belgian Institute for Space
Aeronomy, 1180 Brussels, Belgium
Anastasia Stoycheva
Forecasts Department, National Institute of Meteorology and Hydrology,
1784 Sofia, Bulgaria
Gregor Möller
Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna,
Austria
Jan Kaplon
Institute of Geodesy and Geoinformatics, Wroclaw University of
Environmental and Life Sciences, 50–357 Wroclaw, Poland
Related authors
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Jan Dousa, Pavel Vaclavovic, and Michal Elias
Atmos. Meas. Tech., 10, 3589–3607, https://doi.org/10.5194/amt-10-3589-2017, https://doi.org/10.5194/amt-10-3589-2017, 2017
Short summary
Short summary
The second GOP reprocessing of EUREF network (1996 to 2014) produced GNSS tropospheric parameters for climate research. We performed and evaluated seven solutions and enhanced a strategy for the continuity of tropospheric parameters. Compared with Repro1, Repro2 yielded improvements of 50 % and 25 % in repeatability of horizontal and vertical coordinates and 9 % in tropospheric parameters. Tropospheric gradients revealed a strong sensitivity to GNSS tracking demonstrated at Mallorca station.
Michal Kačmařík, Jan Douša, Galina Dick, Florian Zus, Hugues Brenot, Gregor Möller, Eric Pottiaux, Jan Kapłon, Paweł Hordyniec, Pavel Václavovic, and Laurent Morel
Atmos. Meas. Tech., 10, 2183–2208, https://doi.org/10.5194/amt-10-2183-2017, https://doi.org/10.5194/amt-10-2183-2017, 2017
Rosa Pacione, Andrzej Araszkiewicz, Elmar Brockmann, and Jan Dousa
Atmos. Meas. Tech., 10, 1689–1705, https://doi.org/10.5194/amt-10-1689-2017, https://doi.org/10.5194/amt-10-1689-2017, 2017
Short summary
Short summary
The use of ground-based GNSS data for climate research is an emerging field. The reprocessing activity under EUREF has been a huge effort, generating homogeneous tropospheric products to be used as a data set for monitoring trends in atmospheric water vapour. EPN-Repro2 data have been evaluated against RS and ERA-Interim data as well as in terms of ZTD trends. The obtained results show that they can be used for ZTD trend detection over Europe in areas where other data are not available.
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Short summary
Application of global navigation satellite systems (GNSSs) for atmospheric remote sensing (GNSS meteorology) is a well-established field in both research and operation in Europe. This review covers the state of the art in GNSS meteorology in Europe. It discusses 1) advances in GNSS processing techniques and tropospheric products, 2) use in numerical weather prediction and nowcasting, and 3) climate research.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Rohith Thundathil, Florian Zus, Galina Dick, and Jens Wickert
Geosci. Model Dev., 17, 3599–3616, https://doi.org/10.5194/gmd-17-3599-2024, https://doi.org/10.5194/gmd-17-3599-2024, 2024
Short summary
Short summary
Global Navigation Satellite Systems (GNSS) provides moisture observations through its densely distributed ground station network. In this research, we assimilate a new type of observation called tropospheric gradient observations, which has never been incorporated into a weather model. We develop a forward operator for gradient-based observations and conduct an assimilation impact study. The study shows significant improvements in the model's humidity fields.
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-205, https://doi.org/10.5194/amt-2023-205, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing to extract information not visible in direct observations. The ML method can further improve the results of Bayesian Interpolation, a state-of-the art method to map RO observations. The results display improvement in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere and for all seasons.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, Catherine Hayer, Benjamin Esse, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4801–4817, https://doi.org/10.5194/amt-15-4801-2022, https://doi.org/10.5194/amt-15-4801-2022, 2022
Short summary
Short summary
Sulfur dioxide plume height after a volcanic eruption is an important piece of information for many different scientific studies and applications. Satellite UV retrievals are useful in this respect, but available algorithms have shown so far limited sensitivity to SO2 height. Here we present a new technique to improve the retrieval of SO2 plume height for SO2 columns as low as 5 DU. We demonstrate the algorithm using TROPOMI measurements and compare with other height estimates.
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech., 15, 21–39, https://doi.org/10.5194/amt-15-21-2022, https://doi.org/10.5194/amt-15-21-2022, 2022
Short summary
Short summary
The assimilation of GNSS data in weather models has a positive impact on the forecasts. The impact is still limited due to using only the GPS zenith direction parameters. We calculate and validate more advanced tropospheric products from three satellite systems: the US American GPS, Russian GLONASS and European Galileo. The quality of all the solutions is comparable; however, combining more GNSS systems enhances the observations' geometry and improves the quality of the weather forecasts.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Benjamin Männel, Florian Zus, Galina Dick, Susanne Glaser, Maximilian Semmling, Kyriakos Balidakis, Jens Wickert, Marion Maturilli, Sandro Dahlke, and Harald Schuh
Atmos. Meas. Tech., 14, 5127–5138, https://doi.org/10.5194/amt-14-5127-2021, https://doi.org/10.5194/amt-14-5127-2021, 2021
Short summary
Short summary
Within the MOSAiC expedition, GNSS was used to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked data, coordinates and hourly zenith total delays (ZTDs) were determined using kinematic precise point positioning. The derived ZTD values agree within few millimeters with ERA5 and terrestrial GNSS and VLBI stations. The derived integrated water vapor corresponds to the frequently launched radiosondes (0.08 ± 0.04 kg m−2, rms of the differences of 1.47 kg m−2).
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Alexis Merlaud, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, Maxim Arseni, Tim Bösch, Hugues Brenot, Andreea Calcan, Emmanuel Dekemper, Sebastian Donner, Steffen Dörner, Mariana Carmelia Balanica Dragomir, Lucian Georgescu, Anca Nemuc, Doina Nicolae, Gaia Pinardi, Andreas Richter, Adrian Rosu, Thomas Ruhtz, Anja Schönhardt, Dirk Schuettemeyer, Reza Shaiganfar, Kerstin Stebel, Frederik Tack, Sorin Nicolae Vâjâiac, Jeni Vasilescu, Jurgen Vanhamel, Thomas Wagner, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5513–5535, https://doi.org/10.5194/amt-13-5513-2020, https://doi.org/10.5194/amt-13-5513-2020, 2020
Short summary
Short summary
The AROMAT campaigns took place in Romania in 2014 and 2015. They aimed to test airborne observation systems dedicated to air quality studies and to verify the concept of such campaigns in support of the validation of space-borne atmospheric missions. We show that airborne measurements of NO2 can be valuable for the validation of air quality satellites. For H2CO and SO2, the validation should involve ground-based measurement systems at key locations that the AROMAT measurements help identify.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Natalia Hanna, Estera Trzcina, Gregor Möller, Witold Rohm, and Robert Weber
Atmos. Meas. Tech., 12, 4829–4848, https://doi.org/10.5194/amt-12-4829-2019, https://doi.org/10.5194/amt-12-4829-2019, 2019
Short summary
Short summary
In the study, the potential of GNSS tomography as an important supplementary data source for numerical weather prediction models was examined. We used two GNSS tomography models (TUW, WUELS) in different configurations. The GNSS tomography outputs were assimilated into the WRF model using a radio occultation observations operator (non-standard approach). Promising results show improvement in the weather forecasting of relative humidity and temperature during heavy-precipitation events.
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Gregor Möller and Daniel Landskron
Atmos. Meas. Tech., 12, 23–34, https://doi.org/10.5194/amt-12-23-2019, https://doi.org/10.5194/amt-12-23-2019, 2019
Short summary
Short summary
The paper describes a ray-tracing approach for the proper reconstruction of GNSS signal paths through the lower atmosphere, identifies possible error sources during ray tracing and provides a strategy for reducing their effect on the GNSS tomography solution, thereby contributing to a more reliable reconstruction of the 3-D water vapor distribution in the lower atmosphere from GNSS measurements.
Roeland Van Malderen, Eric Pottiaux, Gintautas Stankunavicius, Steffen Beirle, Thomas Wagner, Hugues Brenot, and Carine Bruyninx
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1170, https://doi.org/10.5194/acp-2018-1170, 2018
Revised manuscript not accepted
Short summary
Short summary
The study investigates the long-term time variability of the integrated water vapour retrieved by different techniques (GPS, UV/VIS satellites and numerical weather prediction reanalyses) for a global dataset of almost 120 sites and for the time period 1995–2010. A stepwise multiple linear regression technique is applied to ascribe the time variability of integrated water vapour to surface measurements at the sites, but also using teleconnection patterns or climate/oceanic indices.
Hugues Brenot, Witold Rohm, Michal Kačmařík, Gregor Möller, André Sá, Damian Tondaś, Lukas Rapant, Riccardo Biondi, Toby Manning, and Cédric Champollion
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-292, https://doi.org/10.5194/amt-2018-292, 2018
Revised manuscript not accepted
Short summary
Short summary
The increasing number of navigation satellites orbiting the Earth and the continuous world wide deployment of dense networks will enable more present and future GNSS applications in the field of atmospheric monitoring. This study suggests some elements of progress in methodology to highlight the interest of ensemble tomography solution for improving the understanding of severe weather conditions, especially the initiation of the deep convection.
Piet Termonia, Claude Fischer, Eric Bazile, François Bouyssel, Radmila Brožková, Pierre Bénard, Bogdan Bochenek, Daan Degrauwe, Mariá Derková, Ryad El Khatib, Rafiq Hamdi, Ján Mašek, Patricia Pottier, Neva Pristov, Yann Seity, Petra Smolíková, Oldřich Španiel, Martina Tudor, Yong Wang, Christoph Wittmann, and Alain Joly
Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, https://doi.org/10.5194/gmd-11-257-2018, 2018
Short summary
Short summary
This paper describes the ALADIN System that has been developed by the international ALADIN consortium of 16 European and northern African partners since its creation in 1990. The paper also describes how its model configurations are used by the consortium partners for their operational weather forecasting applications and for weather and climate research.
J. Caha and M. Kačmařík
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W8, 53–58, https://doi.org/10.5194/isprs-archives-XLII-2-W8-53-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W8-53-2017, 2017
Jan Dousa, Pavel Vaclavovic, and Michal Elias
Atmos. Meas. Tech., 10, 3589–3607, https://doi.org/10.5194/amt-10-3589-2017, https://doi.org/10.5194/amt-10-3589-2017, 2017
Short summary
Short summary
The second GOP reprocessing of EUREF network (1996 to 2014) produced GNSS tropospheric parameters for climate research. We performed and evaluated seven solutions and enhanced a strategy for the continuity of tropospheric parameters. Compared with Repro1, Repro2 yielded improvements of 50 % and 25 % in repeatability of horizontal and vertical coordinates and 9 % in tropospheric parameters. Tropospheric gradients revealed a strong sensitivity to GNSS tracking demonstrated at Mallorca station.
Fadwa Alshawaf, Kyriakos Balidakis, Galina Dick, Stefan Heise, and Jens Wickert
Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, https://doi.org/10.5194/amt-10-3117-2017, 2017
Short summary
Short summary
In this paper, we aimed at estimating climatic trends using precipitable water vapor time series and surface measurements of air temperature in Germany. We used GNSS, ERA-Interim, and synoptic data. The results show mainly a positive trend in precipitable water vapor and temperature with an increase in the trend when moving to northeastern Germany.
Michal Kačmařík, Jan Douša, Galina Dick, Florian Zus, Hugues Brenot, Gregor Möller, Eric Pottiaux, Jan Kapłon, Paweł Hordyniec, Pavel Václavovic, and Laurent Morel
Atmos. Meas. Tech., 10, 2183–2208, https://doi.org/10.5194/amt-10-2183-2017, https://doi.org/10.5194/amt-10-2183-2017, 2017
Rosa Pacione, Andrzej Araszkiewicz, Elmar Brockmann, and Jan Dousa
Atmos. Meas. Tech., 10, 1689–1705, https://doi.org/10.5194/amt-10-1689-2017, https://doi.org/10.5194/amt-10-1689-2017, 2017
Short summary
Short summary
The use of ground-based GNSS data for climate research is an emerging field. The reprocessing activity under EUREF has been a huge effort, generating homogeneous tropospheric products to be used as a data set for monitoring trends in atmospheric water vapour. EPN-Repro2 data have been evaluated against RS and ERA-Interim data as well as in terms of ZTD trends. The obtained results show that they can be used for ZTD trend detection over Europe in areas where other data are not available.
Georg Beyerle and Florian Zus
Atmos. Meas. Tech., 10, 15–34, https://doi.org/10.5194/amt-10-15-2017, https://doi.org/10.5194/amt-10-15-2017, 2017
Short summary
Short summary
Ground-based observations of GPS satellites disappearing below the local horizon are analysed. Starting at +2 degree elevation angle the GPS signals are recorded in open-loop tracking mode down to −1.5 degrees. The open-loop Doppler model has negligible influence on the derived data products for strong signal-to-noise ratios; at lower signal levels, however, a notable bias is uncovered. These results may have implications for the design of future space-based GPS radio occultation missions.
Cuixian Lu, Florian Zus, Maorong Ge, Robert Heinkelmann, Galina Dick, Jens Wickert, and Harald Schuh
Atmos. Meas. Tech., 9, 5965–5973, https://doi.org/10.5194/amt-9-5965-2016, https://doi.org/10.5194/amt-9-5965-2016, 2016
Short summary
Short summary
The recent dramatic development of multi-GNSS constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. In this contribution, we develop a numerical weather model (NWM) constrained PPP processing system to improve the multi-GNSS precise positioning. Compared to the standard PPP solution, significant improvements of both convergence time and positioning accuracy are achieved with the NWM-constrained PPP solution.
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Short summary
Application of global navigation satellite systems (GNSSs) for atmospheric remote sensing (GNSS meteorology) is a well-established field in both research and operation in Europe. This review covers the state of the art in GNSS meteorology in Europe. It discusses 1) advances in GNSS processing techniques and tropospheric products, 2) use in numerical weather prediction and nowcasting, and 3) climate research.
Fadwa Alshawaf, Galina Dick, Stefan Heise, Tzvetan Simeonov, Sibylle Vey, Torsten Schmidt, and Jens Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-151, https://doi.org/10.5194/amt-2016-151, 2016
Revised manuscript not accepted
Short summary
Short summary
In this work, we use time series from GNSS, European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data, and meteorological measurements to evaluate climate evolution in Central Europe. We monitor different atmospheric variables such as temperature, PWV, precipitation, and snow cover. The results show an increasing trend the water vapor time series that are correlated with the trend the temperature tme series. The average increase of water vapor is about 0.3–0.6 mm/decade .
Riccardo Biondi, Andrea Steiner, Gottfried Kirchengast, Hugues Brenot, and Therese Rieckh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-974, https://doi.org/10.5194/acp-2015-974, 2016
Revised manuscript not accepted
Short summary
Short summary
Cloud structure and cloud top height are key parameters for the monitoring of volcanic cloud movement and for characterizing eruptive processes and understanding the impact on short-term climate variability.
We have studied the eruption of Nabro volcano, which has been recognized as the largest stratospheric sulfur injection since Pinatubo (1991) and we have found a clear warming signature after the eruption of Nabro persisting for a few months.
T. Ning, J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, and D. Smale
Atmos. Meas. Tech., 9, 79–92, https://doi.org/10.5194/amt-9-79-2016, https://doi.org/10.5194/amt-9-79-2016, 2016
Short summary
Short summary
Integrated water vapour (IWV) obtained from GNSS is to be developed into a GRUAN data product. In addition to the actual measurement, this data product needs to provide an estimate of the measurement uncertainty at the same time resolution as the actual measurement. The method developed in the paper fulfils the requirement by assigning a specific uncertainty to each data point. The method is also valuable for all applications of GNSS IWV data in atmospheric research and weather forecast.
S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell
Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, https://doi.org/10.5194/acp-15-2675-2015, 2015
M. Shangguan, S. Heise, M. Bender, G. Dick, M. Ramatschi, and J. Wickert
Ann. Geophys., 33, 55–61, https://doi.org/10.5194/angeo-33-55-2015, https://doi.org/10.5194/angeo-33-55-2015, 2015
Short summary
Short summary
We present validation results covering 184 days of SIWV (slant-integrated water vapor) observed by a ground-based GPS receiver and a WVR (water vapor radiometer). SIWV data from GPS and WVR generally show good agreement, and the relation between their differences and possible influential factors are analyzed. The differences in SIWV show a relative elevation dependence. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and differences in SIWV are found.
F. Zus, G. Beyerle, S. Heise, T. Schmidt, and J. Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-12719-2014, https://doi.org/10.5194/amtd-7-12719-2014, 2014
Preprint withdrawn
M. Shangguan, M. Bender, M. Ramatschi, G. Dick, J. Wickert, A. Raabe, and R. Galas
Ann. Geophys., 31, 1491–1505, https://doi.org/10.5194/angeo-31-1491-2013, https://doi.org/10.5194/angeo-31-1491-2013, 2013
N. Theys, R. Campion, L. Clarisse, H. Brenot, J. van Gent, B. Dils, S. Corradini, L. Merucci, P.-F. Coheur, M. Van Roozendael, D. Hurtmans, C. Clerbaux, S. Tait, and F. Ferrucci
Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, https://doi.org/10.5194/acp-13-5945-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Retrieval of top-of-atmosphere fluxes from combined EarthCARE LiDAR, imager and broadband radiometer observations: the BMA-FLX product
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Combining low and high frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
An Improved Geolocation Methodology for Spaceborne Radar and Lidar Systems
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Improving solution availability and temporal consistency of an optimal estimation physical retrieval for ground-based thermodynamic boundary layer profiling
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Analysis of the measurement uncertainty for a 3D wind-LiDAR
Development of a HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Forward operator for polarimetric radio occultation measurements
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Radar and environment-based hail damage estimates using machine learning
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Difference spectrum fitting of the ion–neutral collision frequency from dual-frequency EISCAT measurements
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1539, https://doi.org/10.5194/egusphere-2024-1539, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along-track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft) are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1301, https://doi.org/10.5194/egusphere-2024-1301, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour, as well as temperature and humidity profiles based on ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of the combination of low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference data sets (radiosondes).
Bernat Puigdomènech Treserras and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2024-1546, https://doi.org/10.5194/egusphere-2024-1546, 2024
Short summary
Short summary
The manuscript presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The manuscript details the technical background of the presented methods and various examples of geolocation analysis, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
EGUsphere, https://doi.org/10.5194/egusphere-2024-714, https://doi.org/10.5194/egusphere-2024-714, 2024
Short summary
Short summary
Profiles of temperature and humidity in the atmospheric boundary layer can be retrieved from passive ground-based remote sensors such as microwave radiometers and infrared spectrometers. In this work, we present improvements to the optimal estimation physical retrieval framework TROPoe, which increase the availability of retrieved profiles and temporal consistency and enhance the value of TROPoe for the study of atmospheric processes.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
EGUsphere, https://doi.org/10.5194/egusphere-2024-356, https://doi.org/10.5194/egusphere-2024-356, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back to space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance, and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-184, https://doi.org/10.5194/amt-2023-184, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind-LiDAR designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose an optimized post-processing for error reduction.
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
EGUsphere, https://doi.org/10.5194/egusphere-2024-167, https://doi.org/10.5194/egusphere-2024-167, 2024
Short summary
Short summary
The amount of sunlight reflected by Earth’s surface (albedo) is crucial for its radiative system. Satellite instruments offer detailed spatial and temporal albedo maps, but only in seven specific wavelength bands. We generate albedo maps that fully cover the visible and near-infrared range with a machine learning algorithm. These provide information about how the reflectivity of different land surfaces vary through the year. Our dataset enhances the understanding of Earth's energy balance.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023, https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary
Short summary
We have released version 8 of MIPAS IMK–IAA temperatures and pointing information retrieved from MIPAS Middle and Upper Atmosphere mode version 8.03 calibrated spectra, covering 20–115 km altitude. We considered non-local thermodynamic equilibrium emission explicitly for each limb scan, essential to retrieve accurate temperatures above the mid-mesosphere. Comparisons of this temperature dataset with SABER measurements show excellent agreement, improving those of previous MIPAS versions.
Cited articles
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015.
Bevis, M., Businger, S., Herring, T. A., Rocken C., Anthes, R. A., and Ware, R. H.: GPS Meteorology: Remote Sensing of Atmospheric Water Vapour Using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken C, and Ware, R. H.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol., 33, 379–386, 1994.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006.
Brenot, H., Ducrocq, V., Walpersdorf, A., Champollion, C., and Caumont, O.: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8–9 September 2002 flash flood over southeastern France, J. Geophys. Res., 111, D15105, https://doi.org/10.1029/2004JD005726, 2006.
Bruyninx, C.: The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists, GeoInformatics, 7, 32–35, 2004.
Caissy, M., Agrotis, L., Weber, G., Hermandez-Pajares, M., and Hugentobler, U.: Innovation: Coming Soon: The International GNSS Real-Time Service, available at: http://gpsworld.com/gnss-systemaugmentation-assistanceinnovation-coming-soon-13044/ (last access: 6 July 2016), GPS World 23 52–58, 2012.
Chen, G. and Herring T. A.: Effects of atmospheric azimuth asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502, 1997.
Dach, R., Schaer, S., Lutz, S., Baumann, C., Bock, H., Orliac, E., Prange, L., Thaller, D., Mervart, L., Jäggi, A., Beutler, G., Brockmann, E., Ineichen, D., Wiget, A., Weber, G., Habrich, H., Söhne, W., Ihde, J., Steigenberger, P., and Hugentobler, U.: CODE IGS Analysis Center Technical Report 2013, in: IGS 2013 Tech. Rep., edited by: Dach, R. and Jean, Y., 21–34, 2014.
Dach, R., Andritsch, F., Arnold, D., Bertone, S., Fridez, P., Jäggi, A., Jean, Y., Maier, A., Mervart, L., Meyer, U., Orliac, E., Ortiz–Geist, E., Prange, L., Scaramuzza, S., Schaer, S., Sidorov, D., Sušnik, A., Villiger, A., Walser, P., Baumann, C., Beutler, G., Bock, H., Gäde, A., Lutz, S., Meindl, M., Ostini, L., Sośnica, K., Steinbach, A., and Thaller, D.: Bernese GPS Software Version 5.2. Astronomical Institute, University of Bern, Bern, Switzerland, available at: http://www.bernese.unibe.ch/docs/DOCU52.pdf (last access: 6 July 2016), 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J. et al.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Douša, J.: Towards an Operational Near-real Time Precipitable Water Vapor Estimation, Phys. Chem. Earth, Part A, 26, 189–194, 2001.
Douša, J. and Eliaš, M.: An improved model for calculating tropospheric wet delay, Geophys. Res. Lett., 41, 4389–4397, 2014.
Duan, J., Bevis, M., Fang, P., Bock, Y., Chiswell, S., Businger, S., Rocken, C., Solheim, F., van Hove, T., Ware, R., McClusky, S., Herring, T. A., and King, R. W.: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol., 35, 830–838, 1996.
Elgered, G., Plag, H., Marel, H. V. D., Barlag, S., and Nash, J.: Action Number: 716 Exploitation of Ground-based GPS for Operational Numerical Weather Prediction and Climate Applications – Final Report, EU Publications Office, 2005.
Ge, M., Gendt, G., Dick, G., Zhang, F. P., and Rothacher, M.: A New Data Processing Strategy for Huge GNSS Global Networks, J. Geodesy, 80, 199–203, 2006.
Gendt, G., Reigber, C., and Dick, G.: Near Real-Time Water Vapor Estimation in a German GPS Network – Results from the Ground Program of HGF GASP Project, Phys. Chem. Earth Part A, 26, 413–416, 2001.
Gendt, G., Dick, G., Reigber, C., Tomassini, M, Liu, Y., and Ramatschi, M.: Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany, J. Meteorol. Soc. Japan, 82, 361–370, 2004.
Györi, G. and Douša, J.: GOP-TropDB developments for tropospheric product evaluation and monitoring – design, functionality and initial results, IAG Symp., Springer-Verlag Berlin Heidelberg, ISBN-13: 978-3-319-30895-1, Vol. 143, 595–602, 2016.
Herring T. A.: Modelling atmospheric delays in the analysis of space geodetic data, in: Proceedings of the symposium refraction of transatmospheric signals in geodesy, de Munck, J. C. and Spoelstra, T. A. T., the Netherlands, the Hague, 157–164, 1992.
Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E.: GNSS – Global Navigation Satellite Systems, Springer, Wien, Austria, ISBN-13: 978-3-211-73017-1, 2008.
IERS Conventions: Gérard, P., and Luzum, B. (Eds.), IERS Technical Note No. 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp., 2010.
Marini J. W.: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci., 7, 223–231, 1972.
Pottiaux, E., Brockmann, E., Söhne, W., and Bruyninx, C.: The EUREF – EUMETNET Collaboration: First Experience and Potential Benefits, B. Geod. Geom., 3, 269–288, 2009.
Solheim, F., Vivekanandan, J., Ware, R., and Rocken, C.: Propagation Delays Induced in GPS Signals by Dry Air, Water Vapor, Hydrometeors, and Other Particulates, J. Geophys. Res., 104, 9663–9670, 1999.
Springer, T. A. and Hugentobler, U.: IGS ultra rapid products for (near-) real-time applications, Phys. Chem. Earth, Part A, 26, 623–628, 2001.
Urquhart, L., Santos, M., Nievinski, F., and Boehm, J.: Generation and Assessment of VMF1-Type Grids using North-American Numerical Weather Models, XXV IUGG General Assembly, Melbourne, Australia, 28 June–7 July, available at: http://unb-vmf1.gge.unb.ca/Publications.html (last access: 6 July 2016), 2011.
Václavovic, P. and Douša, J.: G-Nut/Anubis – open-source tool for multi-GNSS data monitoring, IAG Symp., Springer-Verlag Berlin Heidelberg, ISBN-13: 978-3-319-30895-1, Vol. 143, 775–782, 2016.
Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., and Bruyninx, C.: A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech., 7, 2487–2512, https://doi.org/10.5194/amt-7-2487-2014, 2014.
Vedel, H.: TOUGH – Targeting Optimal Use of GPS Humidity Measurement for Meteorology, Final Report, available at: http://tough.dmi.dk/deliverables/d14-final-rep.pdf (last access: 6 July 2016), 2006.
Wübbena, G., Schmitz, M., and Bagge, A.: precise point positioning using state-space representation in RTK network, in: Proceedings of ION GNSS-05, Institute of Navigation, Inc., Fairfax, USA, 2584–2594, available at: www.geopp.com/pdf/ion2005_fw.pdf (last access: 6 July 2016), 2005.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H: Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks, J. Geophys. Res., 102, 5005–5017, 1997.
Zus, F., Dick, G., Heise, S., Douša, J., and Wickert, J.: The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model, Radio Sci., 49, 207–216, 2014.
Zus, F.: WG1 model sub-group summary, ES1206-GNSS4WEC COST Meeting, Wroclaw, 28 September–1 October, 2015.
Zus, F., Dick, G., Douša, J., and Wickert, J.: Systematic errors of mapping functions which are based on the VMF1 concept, GPS Solut., 19, 277–286, 2015a.
Zus, F., Dick, G., Heise, S., and Wickert, J.: A forward operator and its adjoint for GPS slant total delays, Radio Sci., 50, 393–405, 2015b.
Zus, F., Douša, J., Dick, G., and Wickert, J.: Station specific NWM based tropo parameters for the Benchmark campaign, ES1206-GNSS4WEC COST Workshop, Iceland, 8–10 March 2016.
Short summary
GNSS products provide observations of atmospheric water vapour. Advanced tropospheric products focus on ultra-fast and high-resolution zenith total delays (ZTDs), horizontal gradients and slant delays, all suitable for rapid-cycle numerical weather prediction (NWP) and severe weather event monitoring. The GNSS4SWEC Benchmark provides a complex data set for developing and assessing these products, with initial focus on reference ZTDs and gradients derived from several NWP and dense GNSS networks.
GNSS products provide observations of atmospheric water vapour. Advanced tropospheric products...