Articles | Volume 9, issue 2
https://doi.org/10.5194/amt-9-619-2016
https://doi.org/10.5194/amt-9-619-2016
Research article
 | 
24 Feb 2016
Research article |  | 24 Feb 2016

Software to analyze the relationship between aerosol, clouds, and precipitation: SAMAC

S. Gagné, L. P. MacDonald, W. R. Leaitch, and J. R. Pierce

Related authors

Technical note: Common glitch affecting the EC/OC split point determination in the Sunset Thermal-Optical Analyzerand recommendations to reduce its occurrence
Stéphanie Gagné, Brett Smith, Gregory J. Smallwood, and Joel C. Corbin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-298,https://doi.org/10.5194/amt-2019-298, 2019
Preprint withdrawn
Short summary
Experimental investigation of ion–ion recombination under atmospheric conditions
A. Franchin, S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, L. Rondo, A. Downard, F. Bianchi, A. Kupc, G. Tsagkogeorgas, K. Lehtipalo, H. E. Manninen, J. Almeida, A. Amorim, P. E. Wagner, A. Hansel, J. Kirkby, A. Kürten, N. M. Donahue, V. Makhmutov, S. Mathot, A. Metzger, T. Petäjä, R. Schnitzhofer, M. Sipilä, Y. Stozhkov, A. Tomé, V.-M. Kerminen, K. Carslaw, J. Curtius, U. Baltensperger, and M. Kulmala
Atmos. Chem. Phys., 15, 7203–7216, https://doi.org/10.5194/acp-15-7203-2015,https://doi.org/10.5194/acp-15-7203-2015, 2015
Short summary
On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy, A. Kürten, I. K. Ortega, A. Metzger, R. Schnitzhofer, J. Almeida, A. Amorim, J. Dommen, E. M. Dunne, M. Ehn, S. Gagné, L. Ickes, H. Junninen, A. Hansel, V.-M. Kerminen, J. Kirkby, A. Kupc, A. Laaksonen, K. Lehtipalo, S. Mathot, A. Onnela, T. Petäjä, F. Riccobono, F. D. Santos, M. Sipilä, A. Tomé, G. Tsagkogeorgas, Y. Viisanen, P. E. Wagner, D. Wimmer, J. Curtius, N. M. Donahue, U. Baltensperger, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015,https://doi.org/10.5194/acp-15-55-2015, 2015
Short summary
Using measurements of the aerosol charging state in determination of the particle growth rate and the proportion of ion-induced nucleation
J. Leppä, S. Gagné, L. Laakso, H. E. Manninen, K. E. J. Lehtinen, M. Kulmala, and V.-M. Kerminen
Atmos. Chem. Phys., 13, 463–486, https://doi.org/10.5194/acp-13-463-2013,https://doi.org/10.5194/acp-13-463-2013, 2013

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Estimation of twenty-four-hour continuous cloud cover using ground-based imager with convolutional neural network
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-131,https://doi.org/10.5194/amt-2023-131, 2023
Revised manuscript accepted for AMT
Short summary
Neural network processing of holographic images
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022,https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary
Ice crystal images from optical array probes: classification with convolutional neural networks
Louis Jaffeux, Alfons Schwarzenböck, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 15, 5141–5157, https://doi.org/10.5194/amt-15-5141-2022,https://doi.org/10.5194/amt-15-5141-2022, 2022
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006, https://doi.org/10.5194/amt-15-4989-2022,https://doi.org/10.5194/amt-15-4989-2022, 2022
Short summary
The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary

Cited articles

Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer, Aerosol Sci. Tech. 29, 57–69, https://doi.org/10.1080/02786829808965551, 1998.
Atmospheric Science Software Applications – UCAR Community Tools (2009): available at: https://www.ucar.edu/tools/applications_desc.jsp (last access: 1 January 2016), 2009.
Barnes, N.: Publish your computer code: it is good enough, Nature, 467, p. 753, 2010.
Beazley, D. M.: Python Essential Reference, 4th Ed., Developper's Library, Addison-Wesley, Boston, USA, 2009.
Bond, T. C., Charlson, R. J., and Heintzenberg, J.: Qunatifying the emission of light-absorbing particles: Measurements tailored to climate studies, Geophys. Res. Lett., 25, 337–340, 1998.
Download
Short summary
Measurements of clouds with an aircraft are essential to understand how clouds form and how they affect the Earth's climate. These measurements are used in climate models to help predict how our climate might develop in the next century. Aircraft measurements are, however, difficult for modellers to interpret because the way they were acquired and analyzed varies from one team of scientists to the next. We present a software platform for scientists to share and compare their analysis tools.