Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 9, issue 2
Atmos. Meas. Tech., 9, 711–719, 2016
https://doi.org/10.5194/amt-9-711-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 9, 711–719, 2016
https://doi.org/10.5194/amt-9-711-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 29 Feb 2016

Research article | 29 Feb 2016

Evaluation of cloud base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India

Som Sharma et al.

Related authors

Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018,https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India
Naveen Chandra, Shyam Lal, S. Venkataramani, Prabir K. Patra, and Varun Sheel
Atmos. Chem. Phys., 16, 6153–6173, https://doi.org/10.5194/acp-16-6153-2016,https://doi.org/10.5194/acp-16-6153-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
A convolutional neural network for classifying cloud particles recorded by imaging probes
Georgios Touloupas, Annika Lauber, Jan Henneberger, Alexander Beck, and Aurélien Lucchi
Atmos. Meas. Tech., 13, 2219–2239, https://doi.org/10.5194/amt-13-2219-2020,https://doi.org/10.5194/amt-13-2219-2020, 2020
Short summary
Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice
Carola Barrientos Velasco, Hartwig Deneke, Hannes Griesche, Patric Seifert, Ronny Engelmann, and Andreas Macke
Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020,https://doi.org/10.5194/amt-13-1757-2020, 2020
Short summary
Analysis algorithm for sky type and ice halo recognition in all-sky images
Sylke Boyd, Stephen Sorenson, Shelby Richard, Michelle King, and Morton Greenslit
Atmos. Meas. Tech., 12, 4241–4259, https://doi.org/10.5194/amt-12-4241-2019,https://doi.org/10.5194/amt-12-4241-2019, 2019
Short summary
Study of the diffraction pattern of cloud particles and the respective responses of optical array probes
Thibault Vaillant de Guélis, Alfons Schwarzenböck, Valery Shcherbakov, Christophe Gourbeyre, Bastien Laurent, Régis Dupuy, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech., 12, 2513–2529, https://doi.org/10.5194/amt-12-2513-2019,https://doi.org/10.5194/amt-12-2513-2019, 2019
A method for computing the three-dimensional radial distribution function of cloud particles from holographic images
Michael L. Larsen and Raymond A. Shaw
Atmos. Meas. Tech., 11, 4261–4272, https://doi.org/10.5194/amt-11-4261-2018,https://doi.org/10.5194/amt-11-4261-2018, 2018
Short summary

Cited articles

Albrecht, B. A., Fairall, C. W., Thomson, D. W., White, A. B., Snider, J. B., and Schubert, W. H.: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds, Geophys. Res. Lett., 17, 89–92, 1990.
Andrejczuk, M., Gadian, A., and Blyth, A.: Numerical simulations of stratocumulus cloud response to aerosol perturbation, Atmos. Res., 140, 76–84, 2014.
Bauer, P., Auligné, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., Kazumori, M., Kim, M.J., Liu, E. H. C., McNally, A. P., and Macpherson, B.: Satellite cloud and precipitation assimilation at operational NWP centres, Q. J. Roy. Meteor. Soc., 137, 1934–1951, 2011.
Bhat, G. S. and Kumar, S.: Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season, J. Geophys. Res.-Atmos., 120, 1710–1722, 2015.
Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., and Martner, B. E.: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites, J. Appl. Meteorol., 39, 645–665, 2000.
Publications Copernicus
Download
Short summary
Cloud base height observations from Ceilometer CL31 were extensively studied during May 2013 to January 2015 over Ahmedabad (23.03°N, 72.54°E), India. Results indicate that the ceilometer is an excellent instrument to precisely detect low- and mid-level clouds, and that the MODIS satellite provides accurate retrieval of high-level clouds over this region.
Cloud base height observations from Ceilometer CL31 were extensively studied during May 2013 to...
Citation