Articles | Volume 10, issue 9
https://doi.org/10.5194/amt-10-3249-2017
https://doi.org/10.5194/amt-10-3249-2017
Research article
 | 
05 Sep 2017
Research article |  | 05 Sep 2017

The sensitivity of snowfall to weather states over Sweden

Lars Norin, Abhay Devasthale, and Tristan S. L'Ecuyer

Related authors

Observations of anomalous propagation over waters near Sweden
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023,https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Wind turbine impact on operational weather radar I/Q data: characterisation and filtering
Lars Norin
Atmos. Meas. Tech., 10, 1739–1753, https://doi.org/10.5194/amt-10-1739-2017,https://doi.org/10.5194/amt-10-1739-2017, 2017
Short summary
Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden
L. Norin, A. Devasthale, T. S. L'Ecuyer, N. B. Wood, and M. Smalley
Atmos. Meas. Tech., 8, 5009–5021, https://doi.org/10.5194/amt-8-5009-2015,https://doi.org/10.5194/amt-8-5009-2015, 2015
Short summary
A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data
L. Norin
Atmos. Meas. Tech., 8, 593–609, https://doi.org/10.5194/amt-8-593-2015,https://doi.org/10.5194/amt-8-593-2015, 2015
Short summary
The large-scale spatio-temporal variability of precipitation over Sweden observed from the weather radar network
A. Devasthale and L. Norin
Atmos. Meas. Tech., 7, 1605–1617, https://doi.org/10.5194/amt-7-1605-2014,https://doi.org/10.5194/amt-7-1605-2014, 2014

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of tall-building wakes using a scanning Doppler lidar
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025,https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Mid-Atlantic nocturnal low-level jet characteristics: a machine learning analysis of radar wind profiles
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech., 18, 1269–1282, https://doi.org/10.5194/amt-18-1269-2025,https://doi.org/10.5194/amt-18-1269-2025, 2025
Short summary
Mitigating radome-induced bias in X-band weather radar polarimetric moments using an adaptive discrete Fourier transform algorithm
Padmanabhan Thiruvengadam, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech., 18, 1185–1191, https://doi.org/10.5194/amt-18-1185-2025,https://doi.org/10.5194/amt-18-1185-2025, 2025
Short summary
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary

Cited articles

Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, 1973.
Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient, J. Atmos. Ocean. Tech., 20, 845–855, https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2, 2003.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim archive, Era report series, European Centre for Medium Range Weather Forecasts, 2009.
Busuioc, A., Chen, D., and Hellström, C.: Temporal and spatial variability of precipitation in Sweden and its link with the large-scale atmospheric circulation, Tellus A, 53, 348–367, https://doi.org/10.1034/j.1600-0870.2001.01152.x, 2001.
Carlsson, I.: NORDRAD – weather radar network, in: COST 75 Weather Radar Systems, edited by: Collier, C. G., European Commission, 45–52, 1995.
Download
Short summary
For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. For Sweden, large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. In this work we investigate the sensitivity of snowfall to weather states over Sweden to eight selected weather states. The analysis is based on measurements from ground-based radar, satellite observations, spatially interpolated in situ observations, and reanalysis data.
Share