Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 2653–2668, 2018
Atmos. Meas. Tech., 11, 2653–2668, 2018

Research article 07 May 2018

Research article | 07 May 2018

How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

Michael J. Prather et al.

Data sets

ATom: Simulated Data Stream for Modeling ATom-like Measurements M. J. Prather, C. Flynn, A. Fiore, G. Correa, S.A. Strode, S. Steenrod, L. Murray, and J.-F. Lamarque

ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols S. C. Wofsy, E. Apel, D. R. Blake, C. A. Brock, W. H. Brune, T. P. Bui, B. C. Daube, J. E. Dibb, G. S. Diskin, J. W. Elkiins, K. Froyd, S. R. Hall, T. F. Hanisco, L. G. Huey, J. L. Jimenez, K. McKain, S. A. Montzka, T. B. Ryerson, J. P. Schwarz, B. B. Stephens, B. Weinzierl, and P. Wennberg

Short summary
A new protocol for merging in situ atmospheric chemistry measurements with 3-D models is developed. This technique can identify the most reactive air parcels in terms of tropospheric production/loss of O3 & CH4. This approach highlights differences in 6 global chemistry models even with composition specified. Thus in situ measurements from, e.g., NASA's ATom mission can be used to develop a chemical climatology of, not only the key species, but also the rates of key reactions in each air parcel.