Articles | Volume 11, issue 5
https://doi.org/10.5194/amt-11-2653-2018
https://doi.org/10.5194/amt-11-2653-2018
Research article
 | 
07 May 2018
Research article |  | 07 May 2018

How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

Michael J. Prather, Clare M. Flynn, Xin Zhu, Stephen D. Steenrod, Sarah A. Strode, Arlene M. Fiore, Gustavo Correa, Lee T. Murray, and Jean-Francois Lamarque

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Michael Prather on behalf of the Authors (11 Apr 2018)  Author's response 
ED: Publish as is (19 Apr 2018) by Ronald Cohen
AR by Michael Prather on behalf of the Authors (19 Apr 2018)  Author's response   Manuscript 
Download
Short summary
A new protocol for merging in situ atmospheric chemistry measurements with 3-D models is developed. This technique can identify the most reactive air parcels in terms of tropospheric production/loss of O3 & CH4. This approach highlights differences in 6 global chemistry models even with composition specified. Thus in situ measurements from, e.g., NASA's ATom mission can be used to develop a chemical climatology of, not only the key species, but also the rates of key reactions in each air parcel.