Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4261-2018
https://doi.org/10.5194/amt-11-4261-2018
Research article
 | 
19 Jul 2018
Research article |  | 19 Jul 2018

A method for computing the three-dimensional radial distribution function of cloud particles from holographic images

Michael L. Larsen and Raymond A. Shaw

Related authors

Microphysics regimes due to haze-cloud interactions: cloud oscillation and cloud collapse
Fan Yang, Hamed Fahandezh Sadi, Raymond A. Shaw, Fabian Hoffmann, Pei Hou, Aaron Wang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1693,https://doi.org/10.5194/egusphere-2024-1693, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Glaciation of Mixed-Phase Clouds: Insights from Bulk Model and Bin-Microphysics Large-Eddy Simulation Informed by Laboratory Experiment
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1140,https://doi.org/10.5194/egusphere-2024-1140, 2024
Short summary
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension
Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw
Atmos. Chem. Phys., 23, 10625–10642, https://doi.org/10.5194/acp-23-10625-2023,https://doi.org/10.5194/acp-23-10625-2023, 2023
Short summary
Effects of the large-scale circulation on temperature and water vapor distributions in the Π Chamber
Jesse C. Anderson, Subin Thomas, Prasanth Prabhakaran, Raymond A. Shaw, and Will Cantrell
Atmos. Meas. Tech., 14, 5473–5485, https://doi.org/10.5194/amt-14-5473-2021,https://doi.org/10.5194/amt-14-5473-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Revealing halos concealed by cirrus clouds
Yuji Ayatsuka
Atmos. Meas. Tech., 17, 3739–3750, https://doi.org/10.5194/amt-17-3739-2024,https://doi.org/10.5194/amt-17-3739-2024, 2024
Short summary
Quantifying riming from airborne data during the HALO-(AC)3 campaign
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024,https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary
Estimation of 24 h continuous cloud cover using a ground-based imager with a convolutional neural network
Bu-Yo Kim, Joo Wan Cha, and Yong Hee Lee
Atmos. Meas. Tech., 16, 5403–5413, https://doi.org/10.5194/amt-16-5403-2023,https://doi.org/10.5194/amt-16-5403-2023, 2023
Short summary
Neural network processing of holographic images
John S. Schreck, Gabrielle Gantos, Matthew Hayman, Aaron Bansemer, and David John Gagne
Atmos. Meas. Tech., 15, 5793–5819, https://doi.org/10.5194/amt-15-5793-2022,https://doi.org/10.5194/amt-15-5793-2022, 2022
Short summary

Cited articles

Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W.: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part I: Results from direct numerical simulation, New J. Phys., 10, 075015, https://doi.org/10.1088/1367-2630/10/7/075015, 2008.
Baker, B.: Turbulent entrainment and mixing in clouds: A new observational approach, J. Atmos. Sci., 49, 387–404, 1992.
Baker, B. and Lawson, R.: Analysis of tools used to quantify droplet clustering in clouds, J. Atmos. Sci., 67, 3355–3367, 2010.
Balkovsky, E., Falkovich, G., and Fouxon, A.: Intermittent distribution of inertial particles in turbulent flows, Phys. Rev. Lett., 86, 2790–2793, 2001.
Bateson, C. and Aliseda, A.: Wind tunnel measurements of the preferential concentration of inertial droplets in homogenous isotropic turbulence, Exp. Fluids, 52, 1373–1387, 2012.
Download
Short summary
A statistical tool frequently utilized to measure scale-dependent departures from perfect randomness is the radial distribution function. This tool has many strengths, but it is not easy to calculate for particle detections within a three-dimensional sample volume. In this manuscript, we introduce and test a new method to estimate the three-dimensional radial distribution function in realistic measurement volumes.