Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-457-2019
https://doi.org/10.5194/amt-12-457-2019
Research article
 | 
25 Jan 2019
Research article |  | 25 Jan 2019

Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations

Patrick Hannawald, Carsten Schmidt, René Sedlak, Sabine Wüst, and Michael Bittner

Related authors

Analysis of 2D airglow imager data with respect to dynamics using machine learning
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023,https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021,https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019,https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 5955–5963, https://doi.org/10.5194/amt-9-5955-2016,https://doi.org/10.5194/amt-9-5955-2016, 2016
Short summary
A fast SWIR imager for observations of transient features in OH airglow
Patrick Hannawald, Carsten Schmidt, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 9, 1461–1472, https://doi.org/10.5194/amt-9-1461-2016,https://doi.org/10.5194/amt-9-1461-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary

Cited articles

Baker, D. J. and Romick, G. J.: The rayleigh: interpretation of the unit in terms of column emission rate or apparent radiance expressed in SI units, Appl. Optics, 15, 1966–1968, 1976. 
Baker, D. J. and Stair Jr., A. T.: Rocket Measurements of the Altitude Distributions of the Hydroxyl Airglow, Phys. Scripta, 37, 611–622, 1988. a
Becker, E.: Sensitivity of the Upper Mesosphere to the Lorenz Energy Cycle of the Troposphere, J. Atmos. Sci., 66, 647–666, https://doi.org/10.1175/2008JAS2735.1, 2009. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2000. a
Coble, M. R., Papen, G. C., and Gardner, C. S.: Computing Two-Dimensional Unambiguous Horizontal Wavenumber Spectra from OH Airglow Images, IEEE T. Geosci. Remote, 36, 368–382, 1998. a
Download
Short summary
We use a near-infrared camera for the investigation of gravity waves. The camera observes the airglow layer, which is modulated by the gravity waves. The image processing, including the removal of the stars is explained. We describe the analysis with a 2D fast Fourier transform and automatic derivation of the wave parameters. The results show a clear seasonal and intra-diurnal variability, which is characterised in order to improve our understanding of gravity waves in the middle atmosphere.