Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1181-2020
https://doi.org/10.5194/amt-13-1181-2020
Research article
 | 
10 Mar 2020
Research article |  | 10 Mar 2020

Effect of aerosol composition on the performance of low-cost optical particle counter correction factors

Leigh R. Crilley, Ajit Singh, Louisa J. Kramer, Marvin D. Shaw, Mohammed S. Alam, Joshua S. Apte, William J. Bloss, Lea Hildebrandt Ruiz, Pingqing Fu, Weiqi Fu, Shahzad Gani, Michael Gatari, Evgenia Ilyinskaya, Alastair C. Lewis, David Ng'ang'a, Yele Sun, Rachel C. W. Whitty, Siyao Yue, Stuart Young, and Francis D. Pope

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Leigh Crilley on behalf of the Authors (29 Jan 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (02 Feb 2020) by Charles Brock
AR by Leigh Crilley on behalf of the Authors (10 Feb 2020)  Author's response   Manuscript 
Download
Short summary
There is considerable interest in using low-cost optical particle counters (OPCs) for particle mass measurements; however, there is no agreed upon method with respect to calibration. Here we exploit a number of datasets globally to demonstrate that particle composition and relative humidity are the key factors affecting measured concentrations from a low-cost OPC, and we present a simple correction methodology that corrects for this influence.