Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2849-2020
https://doi.org/10.5194/amt-13-2849-2020
Research article
 | 
29 May 2020
Research article |  | 29 May 2020

Methodology for deriving the telescope focus function and its uncertainty for a heterodyne pulsed Doppler lidar

Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua

Related authors

Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023,https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024,https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024,https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024,https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024,https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary

Cited articles

CEIL: Atmospheric Radiation Measurement (ARM) user facility, updated hourly. Ceilometer (CEIL). 2011-06-21 to 2017-12-21, ARM Mobile Facility (ASI) Ascension Island, South Atlantic Ocean; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), North Slope Alaska (NSA) Central Facility, Barrow AK (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Morris, V., Flynn, C., and Ermold, B., ARM Data Center, https://doi.org/10.5439/1181954, 2002. a
Chouza, F., Reitebuch, O., Groß, S., Rahm, S., Freudenthaler, V., Toledano, C., and Weinzierl, B.: Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements, Atmos. Meas. Tech., 8, 2909–2926, https://doi.org/10.5194/amt-8-2909-2015, 2015. a
DLFPT: Atmospheric Radiation Measurement (ARM) user facility, updated hourly. Doppler lidar fixed-pointing (DLFPT). 2011-06-21 to 2017-12-21, ARM Mobile Facility (ASI) Ascension Island, South Atlantic Ocean; AMF1 (M1), Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal (C1), North Slope Alaska (NSA) Central Facility, Barrow AK (C1), Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), Tropical Western Pacific (TWP) Central Facility, Darwin, Australia (C3), compiled by: Newsom, R. and Krishnamurthy, R., ARM Data Center, https://doi.org/10.5439/1025185, 2010. a
Engelmann, R., Wandinger, U., Ansmann, A., Müller, D., Z̆eromskis, E., Althausen, D., and Wehner, B.: Lidar observations of the vertical aerosol flux in the planetary boundary layer, J. Atmos. Ocean. Tech., 25, 1296–1306, https://doi.org/10.1175/2007JTECHA967.1, 2008. a
Flentje, H., Heese, B., Reichardt, J., and Thomas, W.: Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss., 3, 3643–3673, https://doi.org/10.5194/amtd-3-3643-2010, 2010. a
Download
Short summary
We provide a methodology for obtaining a function describing how the Doppler lidar telescope configuration impacts the measurements. Together with the function itself, we also provide the uncertainties in the function, which propagate through to provide uncertainties in the geophysical quantities obtained from the measurements. The method can be used to determine how stable the instrument is over time and also identify if changes have been made in the instrument setup.