Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-3033-2020
https://doi.org/10.5194/amt-13-3033-2020
Research article
 | 
10 Jun 2020
Research article |  | 10 Jun 2020

A comparison of OH nightglow volume emission rates as measured by SCIAMACHY and SABER

Yajun Zhu, Martin Kaufmann, Qiuyu Chen, Jiyao Xu, Qiucheng Gong, Jilin Liu, Daikang Wei, and Martin Riese

Related authors

Impact of lower atmospheric scattering on ground-based optical thermospheric wind observations with spatially uneven airglow
Xiaolong Wei, Guoying Jiang, Yajun Zhu, Jiyao Xu, Weijun Liu, Tiancai Wang, Guangyi Zhu, and Wei Yuan
EGUsphere, https://doi.org/10.5194/egusphere-2025-3326,https://doi.org/10.5194/egusphere-2025-3326, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Development and validation of a ground-based Asymmetric Spatial Heterodyne Spectroscopy (ASHS) system for sounding neutral wind in the mesopause region
Guangyi Zhu, Yajun Zhu, Martin Kaufmann, Tiancai Wang, Weijun Liu, Wei Yuan, Siyin Liu, Guotao Yang, and Jiyao Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2486,https://doi.org/10.5194/egusphere-2025-2486, 2025
Short summary
Migrating diurnal tide anomalies during QBO disruptions in 2016 and 2020: morphology and mechanism
Shuai Liu, Guoying Jiang, Bingxian Luo, Xiao Liu, Jiyao Xu, Yajun Zhu, and Wen Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2610,https://doi.org/10.5194/egusphere-2025-2610, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Extreme Concentric Gravity Waves Observed in the Mesosphere and Thermosphere Regions over Southern Brazil Associated with Fast-Moving Severe Thunderstorms
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1417,https://doi.org/10.5194/egusphere-2025-1417, 2025
Short summary
Upper-atmosphere responses to the 2022 Hunga Tonga–Hunga Ha′apai volcanic eruption via acoustic gravity waves and air–sea interaction
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024,https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Hourly surface nitrogen dioxide retrieval from GEMS tropospheric vertical column densities: benefit of using time-contiguous input features for machine learning models
Janek Gödeke, Andreas Richter, Kezia Lange, Peter Maaß, Hyunkee Hong, Hanlim Lee, and Junsung Park
Atmos. Meas. Tech., 18, 3747–3779, https://doi.org/10.5194/amt-18-3747-2025,https://doi.org/10.5194/amt-18-3747-2025, 2025
Short summary
Remote sensing estimates of time-resolved HONO and NO2 emission rates and lifetimes in wildfires
Carley D. Fredrickson, Scott J. Janz, Lok N. Lamsal, Ursula A. Jongebloed, Joshua L. Laughner, and Joel A. Thornton
Atmos. Meas. Tech., 18, 3669–3689, https://doi.org/10.5194/amt-18-3669-2025,https://doi.org/10.5194/amt-18-3669-2025, 2025
Short summary
A study of measurement scenarios for the future CO2M mission: avoidance of detector saturation and the impact on XCO2 retrievals
Michael Weimer, Michael Hilker, Stefan Noël, Max Reuter, Michael Buchwitz, Blanca Fuentes Andrade, Rüdiger Lang, Bernd Sierk, Yasjka Meijer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Meas. Tech., 18, 3321–3340, https://doi.org/10.5194/amt-18-3321-2025,https://doi.org/10.5194/amt-18-3321-2025, 2025
Short summary
Assimilation of volcanic sulfur dioxide products from IASI and TROPOMI into the chemical transport model MOCAGE: case study of the 2021 La Soufrière Saint Vincent eruption with the March 2022 version of MOCAGE
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025,https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary

Cited articles

Baker, D. J. and Stair, A. T. J.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, 1988. a
Baker, D. J., Thurgood, B. K., Harrison, W. K., Mlynczak, M. G., and Russell,  J. M.: Equatorial enhancement of the nighttime OH mesospheric infrared airglow, Phys. Scripta., 75, 615–619, 2007. a
Bates, D. R. and Nicolet, M.: The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301–327, https://doi.org/10.1029/JZ055i003p00301, 1950. a
Brooke, J. S., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M., Li, G., and Gordon, I. E.: Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH, J. Quant. Spectrosc. Ra., 168, 142–157, https://doi.org/10.1016/j.jqsrt.2015.07.021, 2016. a, b
Cosby, P. C. and Slanger, T. G.: OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys., 85, 77–99, https://doi.org/10.1139/p06-088, 2007. a, b, c
Download
Short summary
OH airglow emissions can be used to derive rotational temperature and trace constituents in the mesopause region, but systematic differences exist for the follow-up data using OH emission radiance as measured by SCIAMACHY and SABER. This paper makes a comparison of OH emission radiance as measured by them and shows the systematic differences between the two measurements. The radiometric calibration of the two instruments could potentially explain the differences between the two measurements.
Share