Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-467-2020
https://doi.org/10.5194/amt-13-467-2020
Research article
 | 
05 Feb 2020
Research article |  | 05 Feb 2020

Determination of time-varying periodicities in unequally spaced time series of OH* temperatures using a moving Lomb–Scargle periodogram and a fast calculation of the false alarm probabilities

Christoph Kalicinsky, Robert Reisch, Peter Knieling, and Ralf Koppmann

Related authors

Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023,https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
A new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021,https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations
Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel
Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016,https://doi.org/10.5194/acp-16-15033-2016, 2016
Short summary
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013,https://doi.org/10.5194/acp-13-10859-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary

Cited articles

Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611, https://doi.org/10.1088/0031-8949/37/4/021, 1998. a
Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, https://doi.org/10.1029/1999JD900307, 2000. a, b, c, d, e, f, g, h, i, j
Bittner, M., Offermann, D., Graef, H. H., Donner, M., and Hamilton, K.: An 18-year time series of OH* rotational temperatures and middle atmosphere decadal variations, J. Atmos. Sol.-Terr. Phy., 64, 1147–1166, https://doi.org/10.1016/S1364-6826(02)00065-2, 2002. a, b
Cumming, A., Marcy, G. W., and Butler, R. P.: The lick planet search: detectability and mass thresholds, Astrophys. J., 526, 890–915, https://doi.org/10.1086/308020, 1999. a, b, c, d, e, f, g, h
Das, U. and Sinha, H. S. S.: Long‐term variations in oxygen green line emission over Kiso, Japan, from ground photometric observations using continuous wavelet transform, J. Geophys. Res., 113, D19115, https://doi.org/10.1029/2007JD009516, 2008. a, b, c
Download
Short summary
This study presents an approach to analyse unequally spaced time series of OH* temperatures with respect to time-varying periodic fluctuations. The approach is based on the classical Lomb–Scargle periodogram and, additionally, the idea of a moving window is used. Furthermore, a fast and easy way to analyse the significance of the results is presented. The general performance of the approach is tested with artificially generated time series and results for real observations are presented.