Articles | Volume 13, issue 10
Atmos. Meas. Tech., 13, 5259–5275, 2020
https://doi.org/10.5194/amt-13-5259-2020
Atmos. Meas. Tech., 13, 5259–5275, 2020
https://doi.org/10.5194/amt-13-5259-2020

Research article 06 Oct 2020

Research article | 06 Oct 2020

Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations

Bangsheng Yin et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Svenja Lange on behalf of the Authors (06 Aug 2020)  Author's response    Manuscript
ED: Publish as is (06 Aug 2020) by Alexander Kokhanovsky
Download
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.