Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations
Bangsheng Yin
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Qilong Min
CORRESPONDING AUTHOR
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Emily Morgan
Atmospheric Sciences Research Center, University at Albany, Albany,
NY, USA
Yuekui Yang
NASA Goddard Space Flight Center, Climate and Radiation Laboratory,
Greenbelt, MD, USA
Alexander Marshak
NASA Goddard Space Flight Center, Climate and Radiation Laboratory,
Greenbelt, MD, USA
Anthony B. Davis
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Related authors
Siwei Li, Everette Joseph, Qilong Min, Bangsheng Yin, Ricardo Sakai, and Megan K. Payne
Atmos. Meas. Tech., 10, 2093–2104, https://doi.org/10.5194/amt-10-2093-2017, https://doi.org/10.5194/amt-10-2093-2017, 2017
Short summary
Short summary
Monitoring fine aerosol concentration is important because of the adverse impacts of high fine-particle concentration on human health. However, monitoring fine aerosols is difficult during cloudy and nighttime periods. In this study, an empirical model using measurements from ceilometers was developed to measure fine aerosol mass concentration even under cloudy or nighttime conditions. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring.
S. Li, E. Joseph, Q. Min, and B. Yin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-18943-2014, https://doi.org/10.5194/acpd-14-18943-2014, 2014
Revised manuscript not accepted
Q. Min, B. Yin, S. Li, J. Berndt, L. Harrison, E. Joseph, M. Duan, and P. Kiedron
Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014, https://doi.org/10.5194/amt-7-1711-2014, 2014
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Yaping Zhou, Yuekui Yang, Meng Gao, and Peng-Wang Zhai
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020, https://doi.org/10.5194/amt-13-1575-2020, 2020
Short summary
Short summary
Satellite cloud detection over snow and ice has been difficult for passive remote sensing instruments due to the lack of contrast between clouds and the bright and cold surfaces; the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) has very limited channels. This study investigates the methodology of applying EPIC's two oxygen absorption band pair ratios for cloud detection over snow and ice surfaces.
Jonathan K. P. Shonk, Jui-Yuan Christine Chiu, Alexander Marshak, David M. Giles, Chiung-Huei Huang, Gerald G. Mace, Sally Benson, Ilya Slutsker, and Brent N. Holben
Atmos. Meas. Tech., 12, 5087–5099, https://doi.org/10.5194/amt-12-5087-2019, https://doi.org/10.5194/amt-12-5087-2019, 2019
Short summary
Short summary
Retrievals of cloud optical depth made using AERONET radiometers in “cloud mode” rely on the assumption that all cloud is liquid. The presence of ice cloud therefore introduces errors in the retrieved optical depth, which can be over 25 in optically thick ice clouds. However, such clouds are not frequent and the long-term mean optical depth error is about 3 for a sample of real clouds. A correction equation could improve the retrieval further, although this would require extra instrumentation.
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
Matthew Gibbons, Qilong Min, and Jiwen Fan
Atmos. Chem. Phys., 18, 12161–12184, https://doi.org/10.5194/acp-18-12161-2018, https://doi.org/10.5194/acp-18-12161-2018, 2018
Short summary
Short summary
The effects of dust aerosols on ice formation within a tropical Atlantic thunderstorm system were investigated using a 3-D weather model and compared with observations. Updated ice formation mechanisms directly connect available dust particles with ice particle formation. The resulting clouds were lower and narrower and produced less rain at the surface compared to cleaner conditions, due to ice formation occurring at warmer temperatures. These results agree well with observed changes.
Jay Herman, Guoyong Wen, Alexander Marshak, Karin Blank, Liang Huang, Alexander Cede, Nader Abuhassan, and Matthew Kowalewski
Atmos. Meas. Tech., 11, 4373–4388, https://doi.org/10.5194/amt-11-4373-2018, https://doi.org/10.5194/amt-11-4373-2018, 2018
Short summary
Short summary
The DSCOVR/EPIC instrument located near the Lagrange 1 Earth–Sun gravitational balance point is able to view the entire sunlit disk of the Earth. This means that during the eclipse of 21 August 2017 EPIC was able to see the region of totality and the much larger region of partial eclipse. Because of this, EPIC is able to measure the global reduction of reflected solar flux. For the wavelength range 388 to 780 nm, we estimated a 10 % reduction in reflected radiation.
Xiaomei Lu, Yongxiang Hu, Yuekui Yang, Mark Vaughan, Zhaoyan Liu, Sharon Rodier, William Hunt, Kathy Powell, Patricia Lucker, and Charles Trepte
Atmos. Meas. Tech., 11, 3281–3296, https://doi.org/10.5194/amt-11-3281-2018, https://doi.org/10.5194/amt-11-3281-2018, 2018
Short summary
Short summary
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. The surface bidirectional reflectances retrieved from CALIOP measurements contribute complementary data for existing MODIS standard data products and could be used to detect and monitor seasonal surface reflectance changes in high latitude regions where passive MODIS measurements are limited.
Igor V. Geogdzhayev and Alexander Marshak
Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, https://doi.org/10.5194/amt-11-359-2018, 2018
Short summary
Short summary
The unique Earth view of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) orbiting at the point of equal attraction from the Earth and the Sun can significantly augment the low-orbit remote sensing of aerosols, clouds and gases. We derive the relationship between the digital counts and the reflected sunlight intensity for some EPIC channels using collocated Earth views from EPIC and Moderate Resolution Imaging Spectroradiometer (MODIS) and EPIC moon views.
Stephen P. Palm, Vinay Kayetha, Yuekui Yang, and Rebecca Pauly
The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, https://doi.org/10.5194/tc-11-2555-2017, 2017
Short summary
Short summary
Blowing snow processes are an important component of ice sheet mass balance and also the atmospheric hydrological cycle. This paper presents the first satellite-derived estimates of continent-wide sublimation and transport of blowing snow over Antarctica. We find larger sublimation values than previously reported in the literature which were based on model parameterizations. We also compute an estimate of the amount of snow transported from continent to ocean and find this to be significant.
Siwei Li, Everette Joseph, Qilong Min, Bangsheng Yin, Ricardo Sakai, and Megan K. Payne
Atmos. Meas. Tech., 10, 2093–2104, https://doi.org/10.5194/amt-10-2093-2017, https://doi.org/10.5194/amt-10-2093-2017, 2017
Short summary
Short summary
Monitoring fine aerosol concentration is important because of the adverse impacts of high fine-particle concentration on human health. However, monitoring fine aerosols is difficult during cloudy and nighttime periods. In this study, an empirical model using measurements from ceilometers was developed to measure fine aerosol mass concentration even under cloudy or nighttime conditions. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring.
Jun Yang, Qilong Min, Weitao Lu, Ying Ma, Wen Yao, and Tianshu Lu
Atmos. Meas. Tech., 10, 1191–1201, https://doi.org/10.5194/amt-10-1191-2017, https://doi.org/10.5194/amt-10-1191-2017, 2017
Short summary
Short summary
A big challenge for accurate cloud detection is the inhomogeneous brightness distribution of sky background, which mainly caused by the difference in atmospheric scattering angles. In this manuscript, we report a new RGB channel operation aiming to remove this inhomogeneous sky background in the total sky images, and then a cloud detection algorithm based on this new channel is proposed which combined the merits of the threshold and differencing methods.
Matthew Gibbons, Qilong Min, and Jiwen Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-368, https://doi.org/10.5194/acp-2016-368, 2016
Revised manuscript not accepted
Short summary
Short summary
Observations suggest cloud systems evolve differently under dusty conditions compared to other aerosols. We have used numerical modeling to study one such case. Dust increases the formation of small sized ice in the mid-troposphere. This enhanced convective intensity, shifted precipitation top height to higher altitudes, and glaciated clouds at lower altitudes. Consistent with observations, average cloud height was lowered due to a greater number of heavy particles forming near the cloud tops.
Kerry Meyer, Yuekui Yang, and Steven Platnick
Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, https://doi.org/10.5194/amt-9-1785-2016, 2016
Short summary
Short summary
This paper presents the expected uncertainties of a single-channel cloud opacity retrieval technique and a temperature-based cloud phase approach in support of the Deep Space Climate Observatory (DSCOVR) mission; DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations. Results show that, for ice clouds, retrieval errors are minimal (< 2 %), while for liquid clouds the error is limited to within 10 %, although for thin clouds the error can be higher.
Jun Yang, Qilong Min, Weitao Lu, Ying Ma, Wen Yao, Tianshu Lu, Juan Du, and Guangyi Liu
Atmos. Meas. Tech., 9, 587–597, https://doi.org/10.5194/amt-9-587-2016, https://doi.org/10.5194/amt-9-587-2016, 2016
J. Yang, Q. Min, W. Lu, W. Yao, Y. Ma, J. Du, T. Lu, and G. Liu
Atmos. Meas. Tech., 8, 4671–4679, https://doi.org/10.5194/amt-8-4671-2015, https://doi.org/10.5194/amt-8-4671-2015, 2015
K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker
Atmos. Meas. Tech., 8, 1537–1554, https://doi.org/10.5194/amt-8-1537-2015, https://doi.org/10.5194/amt-8-1537-2015, 2015
Short summary
Short summary
We test if ground-based sun photometers/radiometers like those in the Aerosol Robotic Network (AERONET) can use the polarization sensitivity of some instruments for improved cloud optical property retrieval. Our radiative transfer simulations show that the direction of linear polarization indicates cloud thermodynamic phase for optically thin clouds. In practice, data analysis shows a weak response with AERONET instruments, most likely due to noise and orientation/calibration ambiguity.
S. Li, E. Joseph, Q. Min, and B. Yin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-18943-2014, https://doi.org/10.5194/acpd-14-18943-2014, 2014
Revised manuscript not accepted
Q. Min, B. Yin, S. Li, J. Berndt, L. Harrison, E. Joseph, M. Duan, and P. Kiedron
Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014, https://doi.org/10.5194/amt-7-1711-2014, 2014
J. Fan, L. R. Leung, P. J. DeMott, J. M. Comstock, B. Singh, D. Rosenfeld, J. M. Tomlinson, A. White, K. A. Prather, P. Minnis, J. K. Ayers, and Q. Min
Atmos. Chem. Phys., 14, 81–101, https://doi.org/10.5194/acp-14-81-2014, https://doi.org/10.5194/acp-14-81-2014, 2014
T. Várnai, A. Marshak, and W. Yang
Atmos. Chem. Phys., 13, 3899–3908, https://doi.org/10.5194/acp-13-3899-2013, https://doi.org/10.5194/acp-13-3899-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Severe hail detection with C-band dual-polarisation radars using convolutional neural networks
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
PEAKO and peakTree: Tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial co-registration of cloud properties for the atmospheric Sentinel missions: Application to TROPOMI
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Infrared Radiometric Image Classification and Segmentation of Cloud Structure Using Deep-learning Framework for Ground-based Infrared Thermal Camera Observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
Marine cloud base height retrieval from MODIS cloud properties using machine learning
The EarthCARE mission: science data processing chain overview
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Cloud top heights and aerosol columnar properties from combined EarthCARE lidar and imager observations: the AM-CTH and AM-ACD products
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Deep convective cloud system size and structure across the global tropics and subtropics
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Segmentation of polarimetric radar imagery using statistical texture
Retrieval of surface solar irradiance from satellite imagery using machine learning: pitfalls and perspectives
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Particle inertial effects on radar Doppler spectra simulation
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Supercooled liquid water cloud classification using lidar backscatter peak properties
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Introduction to EarthCARE synthetic data using a global storm-resolving simulation
Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Liquid cloud optical property retrieval and associated uncertainties using multi-angular and bispectral measurements of the airborne radiometer OSIRIS
Global evaluation of Doppler velocity errors of EarthCARE cloud-profiling radar using a global storm-resolving simulation
Cloud and precipitation microphysical retrievals from the EarthCARE Cloud Profiling Radar: the C-CLD product
Cloud mask algorithm from the EarthCARE Multi-Spectral Imager: the M-CM products
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloe David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1336, https://doi.org/10.5194/egusphere-2024-1336, 2024
Short summary
Short summary
This study demonstrates the potential for enhancing severe hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R.H. Barrett
EGUsphere, https://doi.org/10.5194/egusphere-2024-961, https://doi.org/10.5194/egusphere-2024-961, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
EGUsphere, https://doi.org/10.5194/egusphere-2024-829, https://doi.org/10.5194/egusphere-2024-829, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-837, https://doi.org/10.5194/egusphere-2024-837, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information about the cloud and precipitation particles present in clouds from data measured by ground-based radar instruments. The data consist of Doppler spectra, in which several peaks are formed by hydrometeor populations with different fall velocities. The detection of the specific peaks makes it possible to assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-28, https://doi.org/10.5194/amt-2024-28, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This manuscript describes a new treatment of the spatial mis-registration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
EGUsphere, https://doi.org/10.5194/egusphere-2024-101, https://doi.org/10.5194/egusphere-2024-101, 2024
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observations experiments.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
EGUsphere, https://doi.org/10.5194/egusphere-2024-327, https://doi.org/10.5194/egusphere-2024-327, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest, but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024, https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary
Short summary
The ESA cloud, aerosol and radiation mission EarthCARE will provide active profiling and passive imaging measurements from a single satellite platform. The passive multi-spectral imager (MSI) will add information in the across-track direction. We present the cloud optical and physical properties algorithm, which combines the visible to infrared MSI channels to determine the cloud top pressure, optical thickness, particle size and water path.
Moritz Haarig, Anja Hünerbein, Ulla Wandinger, Nicole Docter, Sebastian Bley, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5953–5975, https://doi.org/10.5194/amt-16-5953-2023, https://doi.org/10.5194/amt-16-5953-2023, 2023
Short summary
Short summary
The atmospheric lidar (ATLID) and Multi-Spectral Imager (MSI) will be carried by the EarthCARE satellite. The synergistic ATLID–MSI Column Products (AM-COL) algorithm described in the paper combines the strengths of ATLID in vertically resolved profiles of aerosol and clouds (e.g., cloud top height) with the strengths of MSI in observing the complete scene beside the satellite track and in extending the lidar information to the swath. The algorithm is validated against simulated test scenes.
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023, https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Short summary
The vertical profiles of the effective radii of ice crystals and ice water content in Arctic semi-transparent stratiform clouds were assessed using quantitative ground-based lidar measurements. The field campaign was part of the Pollution in the ARCtic System (PARCS) project which took place from 13 to 26 May 2016 in Hammerfest (70° 39′ 48″ N, 23° 41′ 00″ E). We show that under certain cloud conditions, lidar measurement combined with a dedicated algorithmic approach is an efficient tool.
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023, https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Short summary
Cloud droplet number concentration can be retrieved from remote sensing measurements. Aircraft measurements are used to validate four ground-based retrievals of cloud droplet number concentration. We demonstrate that retrieved cloud droplet number concentrations align well with aircraft measurements for overcast clouds, but they may substantially differ for broken clouds. The ensemble of various retrievals can help quantify retrieval uncertainties and identify reliable retrieval scenarios.
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023, https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
Short summary
A new database is constructed from over 20 years of satellite records that comprises millions of deep convective clouds and spans the global tropics and subtropics. The database is a collection of clouds ranging from isolated cells to giant cloud systems. The cloud database provides a means of empirically studying the factors that determine the spatial structure and coverage of convective cloud systems, which are strongly related to the overall radiative forcing by cloud systems.
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023, https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Short summary
Near-infrared satellite images have information on clouds that is complementary to what is available from the visible and infrared parts of the spectrum. Using this information for data assimilation and model evaluation requires a fast, accurate forward operator to compute synthetic images from numerical weather prediction model output. We discuss a novel, neural-network-based approach for the 1.6 µm near-infrared channel that is suitable for this purpose and also works for other solar channels.
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023, https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary
Short summary
The EarthCARE satellite mission Level 2 algorithm development requires realistic 3D cloud and aerosol scenes along the satellite orbits. One of the best ways to produce these scenes is to use a high-resolution numerical weather prediction model to simulate atmospheric conditions at 250 m horizontal resolution. This paper describes the production and validation of three EarthCARE test scenes.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023, https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
Atmos. Meas. Tech., 16, 4165–4181, https://doi.org/10.5194/amt-16-4165-2023, https://doi.org/10.5194/amt-16-4165-2023, 2023
Short summary
Short summary
Solar surface irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, which is crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform and should probably be used in conjunction with physical approaches.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023, https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Short summary
We show that large rain droplets, with large inertia, are unable to follow the rapid change of velocity field in a turbulent environment. A lack of consideration for this inertial effect leads to an artificial broadening of the Doppler spectrum from the conventional simulator. Based on the physics-based simulation, we propose a new approach to generate the radar Doppler spectra. This simulator provides a valuable tool to decode cloud microphysical and dynamical properties from radar observation.
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023, https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023, https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Short summary
We present a method for accurately estimating the contents and properties of clouds, snow, rain, and aerosols through the atmosphere, using the combined measurements of the radar, lidar, and radiometer instruments aboard the upcoming EarthCARE satellite, and evaluate the performance of the retrieval, using test scenes simulated from a numerical forecast model. When EarthCARE is in operation, these quantities and their estimated uncertainties will be distributed in a data product called ACM-CAP.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
EGUsphere, https://doi.org/10.5194/egusphere-2023-1085, https://doi.org/10.5194/egusphere-2023-1085, 2023
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Woosub Roh, Masaki Satoh, Tempei Hashino, Shuhei Matsugishi, Tomoe Nasuno, and Takuji Kubota
Atmos. Meas. Tech., 16, 3331–3344, https://doi.org/10.5194/amt-16-3331-2023, https://doi.org/10.5194/amt-16-3331-2023, 2023
Short summary
Short summary
JAXA EarthCARE synthetic data (JAXA L1 data) were compiled using the global storm-resolving model (GSRM) NICAM (Nonhydrostatic ICosahedral
Atmospheric Model) simulation with 3.5 km horizontal resolution and the Joint-Simulator. JAXA L1 data are intended to support the development of JAXA retrieval algorithms for the EarthCARE sensor before launch of the satellite. The expected orbit of EarthCARE and horizontal sampling of each sensor were used to simulate the signals.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Yuichiro Hagihara, Yuichi Ohno, Hiroaki Horie, Woosub Roh, Masaki Satoh, and Takuji Kubota
Atmos. Meas. Tech., 16, 3211–3219, https://doi.org/10.5194/amt-16-3211-2023, https://doi.org/10.5194/amt-16-3211-2023, 2023
Short summary
Short summary
The CPR on the EarthCARE satellite is the first satellite-borne Doppler radar. We evaluated the effectiveness of horizontal integration and the unfolding method for the reduction of the Doppler error (the standard deviation of the random error) in the CPR_ECO product. The error was higher in the tropics than in the other latitudes due to frequent rain echo occurrence and limitation of its unfolding correction. If we use low-mode operation (high PRF), the errors become small enough.
Kamil Mroz, Bernat Puidgomènech Treserras, Alessandro Battaglia, Pavlos Kollias, Aleksandra Tatarevic, and Frederic Tridon
Atmos. Meas. Tech., 16, 2865–2888, https://doi.org/10.5194/amt-16-2865-2023, https://doi.org/10.5194/amt-16-2865-2023, 2023
Short summary
Short summary
We present the theoretical basis of the algorithm that estimates the amount of water and size of particles in clouds and precipitation. The algorithm uses data collected by the Cloud Profiling Radar that was developed for the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission. After the satellite launch, the vertical distribution of cloud and precipitation properties will be delivered as the C-CLD product.
Anja Hünerbein, Sebastian Bley, Stefan Horn, Hartwig Deneke, and Andi Walther
Atmos. Meas. Tech., 16, 2821–2836, https://doi.org/10.5194/amt-16-2821-2023, https://doi.org/10.5194/amt-16-2821-2023, 2023
Short summary
Short summary
The Multi-Spectral Imager (MSI) on board the EarthCARE satellite will provide the information needed for describing the cloud and aerosol properties in the cross-track direction, complementing the measurements from the Cloud Profiling Radar, Atmospheric Lidar and Broad-Band Radiometer. The accurate discrimination between clear and cloudy pixels is an essential first step. Therefore, the cloud mask algorithm provides a cloud flag, cloud phase and cloud type product for the MSI observations.
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023, https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Short summary
This paper describes EarthCARE’s L2 product ACM-3D. It includes the scene construction algorithm (SCA) used to produce the indexes for reconstructing 3D atmospheric scene based on satellite nadir retrievals. It also provides the information about the buffer zone sizes of 3D assessment domains and the ranking scores for selecting the best 3D assessment domains. These output variables are needed to run 3D radiative transfer models for the radiative closure assessment of EarthCARE’s L2 retrievals.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023, https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary
Short summary
Forward modeling of spaceborne millimeter-wave radar composed of eight submodules is presented. We quantify the uncertainties in radar reflectivity that may be caused by the physical model parameters via a sensitivity analysis. The simulations with improved and conventional settings are compared with CloudSat data, and the simulation results are evaluated and analyzed. The results are instructive to the optimization of forward modeling and microphysical parameter retrieval.
Cited articles
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
optical depth calculations, J. Atmos. Ocean. Tech., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999.
Carbajal Henken, C. K., Doppler, L., Lindstrot, R., Preusker, R., and Fischer, J.: Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution, Atmos. Meas. Tech., 8, 3419–3431, https://doi.org/10.5194/amt-8-3419-2015, 2015.
Chandrasekhar, S.: Radiative transfer, Dover, New York, 1960.
Chou, M. D. and Kouvaris, L.: Monochromatic calculations of atmospheric
radiative transfer due to molecular line absorption, J. Geophys. Res., 91, 4047–4055, 1986.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M.
J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra.,
91, 233–244, 2005.
Daniel, J. S., Solomon, S., Miller, H. L., Langford, A. O., Portmann, R. W., and Eubank, C. S.: Retrieving cloud information from passive measurements of
solar radiation absorbed by molecular oxygen and O2−O2, J. Geophys.
Res., 108, 4515, https://doi.org/10.1029/2002JD002994, 2003.
Dannenberg, R. B.: Interpolation error in waveform table lookup, in:
Proceedings of the International Computer Music Conference, International Computer Music Association, San Francisco, 1998.
Davis, A. B. and Marshak, A.: Space–time characteristics of light
transmitted through dense clouds: A Green's function analysis, J. Atmos. Sci., 59, 2713–2727, 2002.
Davis, A. B., Merlin, G., Cornet, C., Labonnote, L. C., Riédi, J.,
Ferlay, N., Dubuisson, P., Min, Q., Yang, Y., and Marshak, A.: Cloud
information content in EPIC/DSCOVR's oxygen A-and B-band channels: An
optimal estimation approach, J. Quant. Spectrosc. Ra., 216, 6–16, 2018a.
Davis, A. B., Ferlay, N., Libois, Q., Marshak, A., Yang, Y., and Min, Q.:
Cloud information content in EPIC/DSCOVR's oxygen A-and B-band channels: A
physics-based approach, J. Quant. Spectrosc. Ra., 220, 84–96, 2018b.
Duan, M., Min, Q., and Li, J.: A fast radiative transfer model for
simulating high-resolution absorption bands, J. Geophys. Res., 110, D15201, https://doi.org/10.1029/2004JD005590, 2005.
Ferlay, N., Thieuleux, F., Cornet, C., Davis, A. B., Dubuisson, P., Ducos,
F., Parol, F., Riédi, J., and Vanbauce, C.: Toward new inferences about
cloud structures from multidirectional measurements in the oxygen A band:
middle-of-cloud pressure and cloud geometrical thickness from
POLDER-3/PARASOL, J. Appl. Meteorol. Clim., 49, 2492–2507, 2010.
Fischer, J. and Grassl, H.: Detection of cloud-top height from
backscattered radiances within the oxygen A band. Part 1: Theoretical study, J. Appl. Meteorol., 30, 1245–1259, 1991.
Gastellu-Etchegorry, J. P., Gascon, F., and Esteve, P.: An interpolation
procedure for generalizing a look-up table inversion method, Remote Sens.
Environ., 87, 55–71, 2003.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan,
K.: The modern-era retrospective analysis for research and applications,
version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Geogdzhayev, I. V. and Marshak, A.: Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations, Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, 2018.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., and Drouin, B. J.:
The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra.,
203, 3–69, 2017.
Holdaway, D. and Yang, Y.: Study of the effect of temporal sampling frequency on DSCOVR observations using the GEOS-5 nature run results (Part II): Cloud Coverage, Remote Sens., 8, 431, https://doi.org/10.3390/rs8050431, 2016.
Ishimaru, A.: Wave propagation and scattering in random media, Wiley-IEEE-Press, New York, 1999.
Irvine, W. M.: The formation of absorption bands and the distribution of
photon optical paths in a scattering atmosphere, B. Astron. I. Neth., 17, 266–279, 1964.
Ivanov, V. V. and Gutshabash, S. D.: Propagation of brightness wave in an
optically thick atmosphere, Phys. Atmos. Okeana, 10, 851–863, 1974.
Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and Haan, J. D.: A fast
method for retrieval of cloud parameters using oxygen A band measurements
from the Global Ozone Monitoring Experiment, J. Geophys. Res., 106,
3475–3490, 2001.
Kokhanovsky, A. A. and Rozanov, V. V.: The physical parameterization of the
top-of-atmosphere reflection function for a cloudy atmosphere–underlying
surface system: the oxygen A-band case study, J. Quant. Spectrosc. Ra., 85,
35–55, https://doi.org/10.1016/S0022-4073(03)00193-6, 2004.
Kokhanovsky, A. A., Rozanov, V. V., Zege, E. P., Bovesmann, H., and Burrows, J. P.: A semi analytical cloud retrieval algorithm usinfg backscattered
radiation in 0.4–2.4 µm spectral region, J. Geophys. Res., 108, 4008, https://doi.org/10.1029/2001JD001543, 2003.
Kuze, A. and Chance, K. V.: Analysis of cloud top height and cloud coverage from satellites using the O2A and B bands, J. Geophys. Res., 99, 14481–14491, 1994.
Lelli, L., Kokhanovsky, A. A., Rozanov, V. V., Vountas, M., and Burrows, J. P.: Linear trends in cloud top height from passive observations in the oxygen A-band, Atmos. Chem. Phys., 14, 5679–5692, https://doi.org/10.5194/acp-14-5679-2014,
2014.
Lelli, L., Kokhanovsky, A. A., Rozanov, V. V., Vountas, M., Sayer, A. M., and Burrows, J. P.: Seven years of global retrieval of cloud properties using space-borne data of GOME, Atmos. Meas. Tech., 5, 1551–1570, https://doi.org/10.5194/amt-5-1551-2012, 2012.
Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F., Spurr, R. J. D., Pedergnana, M., Doicu, A., Molina García, V., and Schüssler, O.: The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor, Atmos. Meas. Tech., 11, 409–427, https://doi.org/10.5194/amt-11-409-2018, 2018.
Marshak, A. and Davis, A. (Eds.).: 3D radiative transfer in cloudy
atmospheres, Springer Science & Business Media, Springer, Berlin, Heidelberg, New York, 2005.
Marshak, A., Herman, J., Adam, S., Carn, S., Cede, A., Geogdzhayev, I.,
Huang, D., Huang, L. K., Knyazikhin, Y., Kowalewski, M., and Krotkov, N.:
Earth observations from DSCOVR EPIC instrument, B. Am. Meteorol. Soc., 99, 1829–1850, https://doi.org/10.1175/BAMS-D-17-0223.1, 2018.
Meyer, K., Yang, Y., and Platnick, S.: Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, 2016.
Min, Q. and Harrison, L. C.: Retrieval of atmospheric optical depth profiles
from downward-looking high-resolution O2 A-band measurements: Optically thin conditions, J. Atmos. Sci., 61, 2469–2477, 2004.
Min, Q., Yin, B., Li, S., Berndt, J., Harrison, L., Joseph, E., Duan, M., and Kiedron, P.: A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure, Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014, 2014.
NASA ASDC: CAL_LID_L2_05kmCLay-Standard-V4-20, available at: https://www-calipso.larc.nasa.gov/products/inventory.php, last access: 14 July 2017.
NASA LARC ASDC DAAC (Langley Research Center's Atmospheric Science Data Center Distributed Active Archive Centers): DSCOVR EPIC Level 1B Version 2, https://doi.org/10.5067/EPIC/DSCOVR/L1B.002, 2018a.
NASA LARC ASDC DAAC (Langley Research Center's Atmospheric Science Data Center Distributed Active Archive Centers): DSCOVR EPIC Cloud Products, https://doi.org/10.5067/EPIC/DSCOVR/L2_Cloud_01, 2018b.
NASA LARC: Data product: LIDAR Level2 Version 4.20 5-km Cloud Layer, available at: https://subset.larc.nasa.gov/calipso/index.php, last access: 29 September 2020.
O'Brien, D. M. and Mitchell, R. M.: Error estimates for retrieval of
cloud-top pressure using absorption in the A band of oxygen, J. Appl. Meteorol., 31, 1179–1192, 1992.
Pandey, P., De Ridder, K., Gillotay, D., and van Lipzig, N. P. M.: Estimating cloud optical thickness and associated surface UV irradiance from SEVIRI by implementing a semi-analytical cloud retrieval algorithm, Atmos. Chem. Phys., 12, 7961–7975, https://doi.org/10.5194/acp-12-7961-2012, 2012.
Preusker, R. and Lindstrot, R.: Remote Sensing of Cloud-Top Pressure Using
Moderately Resolved Measurements within the Oxygen A Band-A Sensitivity
Study, J. Appl. Meteorol. Clim., 48, 1562–1574, 2009.
Richardson, M. and Stephens, G. L.: Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties, Atmos. Meas. Tech., 11, 1515–1528, https://doi.org/10.5194/amt-11-1515-2018, 2018.
Rozanov, V. V. and Kokhanovsky, A. A.: Semianalytical cloud retrieval
algorithm as applied to the cloud top altitude and the cloud geometrical
thickness determination from top-of-atmosphere reflectance measurements in
the oxygen A band, J. Geophys. Res., 109, 4070, https://doi.org/10.1029/2003JD004104,
2004.
Schuessler, O., Rodriguez, D. G. L., Doicu, A., and Spurr, R.: Information
Content in the Oxygen A-Band for the Retrieval of Macrophysical Cloud
Parameters, IEEE T. Geosci. Remote, 52, 3246–3255, 2013.
Seager, S., Turner, E. L., Schafer, J., and Ford, E. B.: Vegetation's red
edge: a possible spectroscopic biosignature of extraterrestrial plants, Astrobiology, 5, 372–390, 2005.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509, 1988.
Thomas, G. E. and Stamnes, K.: Radiative transfer in the atmosphere and
ocean, Cambridge University Press, Cambridge, 2002.
Tilstra, L. G., Wang, P., and Stammes, P.: Surface reflectivity
climatologies from UV to NIR determined from Earth observations by GOME-2
and SCIAMACHY, J. Geophys. Res., 122, 4084–4111, https://doi.org/10.1002/2016JD025940, 2017.
Tropospheric Emission Monitoring Internet Service (TEMIS): GOME-2 surface LER, available at: http://temis.nl/surface/gome2_ler/databases/, last access: 13 September 2017.
Van de Hulst, H. C.: Multiple Light Scattering: Tables, Formulas, and
Applications, Academic Press, 299 pp., 1980.
Van de Hulst, H. C.: Multiple light scattering: tables, formulas, and
applications, Elsevier, Burlington Elsevier Science, 2012.
Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H., Liu, Z., Hu, Y., and Hostetler, C. A.: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products, in: Laser radar techniques for atmospheric sensing, International Society for Optics and Photonics, 5575, 16–30, https://doi.org/10.1117/12.572024, 2004.
Yamamoto, G. and Wark, D. Q.: Discussion of letter by A. Hanel:
determination of cloud altitude from a satellite, J. Geophys. Res., 66,
3596–3596, 1961.
Yang, Y., Marshak, A., Mao, J., Lyapustin, A., and Herman, J.: A method of
retrieving cloud top height and cloud geometrical thickness with oxygen A
and B bands for the Deep Space Climate Observatory (DSCOVR) mission:
Radiative transfer simulations, J. Quant. Spectrosc. Ra., 122, 141–149,
2013.
Yang, Y., Meyer, K., Wind, G., Zhou, Y., Marshak, A., Platnick, S., Min, Q., Davis, A. B., Joiner, J., Vasilkov, A., Duda, D., and Su, W.: Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, 2019.
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based...