Articles | Volume 13, issue 10
Atmos. Meas. Tech., 13, 5259–5275, 2020
https://doi.org/10.5194/amt-13-5259-2020
Atmos. Meas. Tech., 13, 5259–5275, 2020
https://doi.org/10.5194/amt-13-5259-2020

Research article 06 Oct 2020

Research article | 06 Oct 2020

Cloud-top pressure retrieval with DSCOVR EPIC oxygen A- and B-band observations

Bangsheng Yin et al.

Related authors

Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter
Siwei Li, Everette Joseph, Qilong Min, Bangsheng Yin, Ricardo Sakai, and Megan K. Payne
Atmos. Meas. Tech., 10, 2093–2104, https://doi.org/10.5194/amt-10-2093-2017,https://doi.org/10.5194/amt-10-2093-2017, 2017
Short summary
Long-term observation of aerosol–cloud relationships in the Mid-Atlantic of the United States
S. Li, E. Joseph, Q. Min, and B. Yin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-18943-2014,https://doi.org/10.5194/acpd-14-18943-2014, 2014
Revised manuscript not accepted
A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure
Q. Min, B. Yin, S. Li, J. Berndt, L. Harrison, E. Joseph, M. Duan, and P. Kiedron
Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014,https://doi.org/10.5194/amt-7-1711-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999. 
Carbajal Henken, C. K., Doppler, L., Lindstrot, R., Preusker, R., and Fischer, J.: Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution, Atmos. Meas. Tech., 8, 3419–3431, https://doi.org/10.5194/amt-8-3419-2015, 2015. 
Chandrasekhar, S.: Radiative transfer, Dover, New York, 1960. 
Chou, M. D. and Kouvaris, L.: Monochromatic calculations of atmospheric radiative transfer due to molecular line absorption, J. Geophys. Res., 91, 4047–4055, 1986. 
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. 
Download
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.