Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5537-2020
https://doi.org/10.5194/amt-13-5537-2020
Research article
 | Highlight paper
 | 
16 Oct 2020
Research article | Highlight paper |  | 16 Oct 2020

A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements

Yun Dong, Elena Spinei, and Anuj Karpatne

Data sets

synthetic-AMFs-ML Y. Dong, E. Spinei, and A. Karpatne https://doi.org/10.7294/6A3T-ZV25

Download
Short summary
This paper is about a feasibility study of applying a machine learning technique to derive aerosol properties from a single MAX-DOAS sky scan, which detects sky-scattered UV–visible photons at multiple elevation angles. Evaluation of retrieved aerosol properties shows good performance of the ML algorithm, suggesting several advantages of a ML-based inversion algorithm such as fast data inversion, simple implementation and the ability to extract information not available using other algorithms.