Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5537-2020
https://doi.org/10.5194/amt-13-5537-2020
Research article
 | Highlight paper
 | 
16 Oct 2020
Research article | Highlight paper |  | 16 Oct 2020

A feasibility study to use machine learning as an inversion algorithm for aerosol profile and property retrieval from multi-axis differential absorption spectroscopy measurements

Yun Dong, Elena Spinei, and Anuj Karpatne

Related authors

Adaptation of the CIMEL-318T to Shipborne Use: Three Years of Automated AERONET-Compatible Aerosol Measurements Onboard the Research Vessel Marion Dufresne
Benjamin Torres, Luc Blarel, Philippe Goloub, Gaël Dubois, Maria Fernanda Sanchez-Barrero, Ioana Elisabeta Popovici, Fabrice Maupin, Elena Lind, Alexander Smirnov, Ilya Slutsker, Julien Chimot, Ramiro Gonzalez, Michaël Sicard, Jean Marc Metzger, and Pierre Tulet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1356,https://doi.org/10.5194/egusphere-2025-1356, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-27,https://doi.org/10.5194/essd-2025-27, 2025
Revised manuscript accepted for ESSD
Short summary
Atmospheric processing and aerosol aging responsible for observed increase in absorptivity of long-range transported smoke over the southeast Atlantic
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3197,https://doi.org/10.5194/egusphere-2024-3197, 2025
Short summary
Long-term trends in aerosol properties derived from AERONET measurements
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
EGUsphere, https://doi.org/10.5194/egusphere-2024-2533,https://doi.org/10.5194/egusphere-2024-2533, 2024
Short summary
Effect of polyoxymethylene (POM-H Delrin) off-gassing within the Pandora head sensor on direct-sun and multi-axis formaldehyde column measurements in 2016–2019
Elena Spinei, Martin Tiefengraber, Moritz Müller, Manuel Gebetsberger, Alexander Cede, Luke Valin, James Szykman, Andrew Whitehill, Alexander Kotsakis, Fernando Santos, Nader Abbuhasan, Xiaoyi Zhao, Vitali Fioletov, Sum Chi Lee, and Robert Swap
Atmos. Meas. Tech., 14, 647–663, https://doi.org/10.5194/amt-14-647-2021,https://doi.org/10.5194/amt-14-647-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-layer retrieval of aerosol optical depth in the troposphere using SEVIRI data: a case study of the European continent
Maryam Pashayi, Mehran Satari, and Mehdi Momeni Shahraki
Atmos. Meas. Tech., 18, 1415–1439, https://doi.org/10.5194/amt-18-1415-2025,https://doi.org/10.5194/amt-18-1415-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at night-time
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2025-667,https://doi.org/10.5194/egusphere-2025-667, 2025
Short summary
Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc E. J. Stettler
Atmos. Meas. Tech., 18, 37–56, https://doi.org/10.5194/amt-18-37-2025,https://doi.org/10.5194/amt-18-37-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, and J. Pepijn Veefkind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-198,https://doi.org/10.5194/amt-2024-198, 2025
Revised manuscript accepted for AMT
Short summary
Satellite Aerosol Composition Retrieval from a combination of three different Instruments: Information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2800,https://doi.org/10.5194/egusphere-2024-2800, 2024
Short summary

Cited articles

Beirle, S., Dörner, S., Donner, S., Remmers, J., Wang, Y., and Wagner, T.: The Mainz profile algorithm (MAPA), Atmos. Meas. Tech., 12, 1785–1806, https://doi.org/10.5194/amt-12-1785-2019, 2019. 
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh Optical Depth Calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, https://doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2, 1999. 
Britz, D.: Recurrent Neural Networks Tutorial, Part 1 – Introduction to RNNs, WildML, available at: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ (last access: 15 January 2020), 2015. 
Clémer, K., Van Roozendael, M., Fayt, C., Hendrick, F., Hermans, C., Pinardi, G., Spurr, R., Wang, P., and De Mazière, M.: Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing, Atmos. Meas. Tech., 3, 863–878, https://doi.org/10.5194/amt-3-863-2010, 2010. 
Download
Short summary
This paper is about a feasibility study of applying a machine learning technique to derive aerosol properties from a single MAX-DOAS sky scan, which detects sky-scattered UV–visible photons at multiple elevation angles. Evaluation of retrieved aerosol properties shows good performance of the ML algorithm, suggesting several advantages of a ML-based inversion algorithm such as fast data inversion, simple implementation and the ability to extract information not available using other algorithms.
Share