Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5569-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5569-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Solar radiometer sensing of multi-year aerosol features over a tropical urban station: direct-Sun and inversion products
Katta Vijayakumar
Department of Physics, Sri Venkateswara University (SVU), Tirupati
517502, India
Panuganti C. S. Devara
CORRESPONDING AUTHOR
Amity Centre for Ocean-Atmospheric Science and Technology (ACOAST); Amity Centre for Environmental Science and Health (ACESH) & Amity School of Earth and Environmental Sciences (ASEES), Amity University Haryana, Manesar 122413, India
Sunil M. Sonbawne
Indian Institute of Tropical Meteorology (IITM), Pune 411008, India
David M. Giles
Science Systems and Applications (SSA), Inc., Lanham, MD 20706,
USA
NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA
Brent N. Holben
NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA
Sarangam Vijaya Bhaskara Rao
Department of Physics, Sri Venkateswara University (SVU), Tirupati
517502, India
Chalicheemalapalli K. Jayasankar
Department of Physics, Sri Venkateswara University (SVU), Tirupati
517502, India
Related authors
No articles found.
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025, https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Short summary
Tiny atmospheric particles from wildfire smoke impact the climate by interacting with sunlight and clouds, the extent of which is uncertain due to gaps in understanding how smoke changes over time. We developed a new method using remote sensing instruments to track how these particles evolve during atmospheric transport. Our results show that the ability of these particles to absorb sunlight increases as they travel. This discovery could help improve predictions of future climate scenarios.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022, https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary
Short summary
This paper describes modification of smoothness constraints on the imaginary part of the refractive index employed in the AERONET aerosol retrieval algorithm. This modification is termed relaxed due to the weaker strength of this new smoothness constraint. Applying the modified version of the smoothness constraint results in a significant reduction of retrieved light absorption by brown-carbon-containing aerosols.
Suvarna Fadnavis, Prashant Chavan, Akash Joshi, Sunil M. Sonbawne, Asutosh Acharya, Panuganti C. S. Devara, Alexandru Rap, Felix Ploeger, and Rolf Müller
Atmos. Chem. Phys., 22, 7179–7191, https://doi.org/10.5194/acp-22-7179-2022, https://doi.org/10.5194/acp-22-7179-2022, 2022
Short summary
Short summary
We show that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean. These aerosols are then lifted into the UTLS by the ascending branch of the Hadley circulation. They are further transported to the Southern Hemisphere and downward via westerly ducts over the tropical Atlantic and Pacific. These aerosols increase tropospheric heating, resulting in an increase in water vapor, which is then transported to the UTLS.
Jean-Claude Roger, Eric Vermote, Sergii Skakun, Emilie Murphy, Oleg Dubovik, Natacha Kalecinski, Bruno Korgo, and Brent Holben
Atmos. Meas. Tech., 15, 1123–1144, https://doi.org/10.5194/amt-15-1123-2022, https://doi.org/10.5194/amt-15-1123-2022, 2022
Short summary
Short summary
From measurements of the sky performed by AERONET, we determined the microphysical properties of the atmospheric particles (aerosols) for each AERONET site. We used the aerosol optical thickness and its variation over the visible spectrum. This allows us to determine an aerosol model useful for (but not only) the validation of the surface reflectance satellite-derived product. The impact of the aerosol model uncertainties on the surface reflectance validation has been found to be 1 % to 3 %.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Sreeharsha Hanumanthu, Bärbel Vogel, Rolf Müller, Simone Brunamonti, Suvarna Fadnavis, Dan Li, Peter Ölsner, Manish Naja, Bhupendra Bahadur Singh, Kunchala Ravi Kumar, Sunil Sonbawne, Hannu Jauhiainen, Holger Vömel, Beiping Luo, Teresa Jorge, Frank G. Wienhold, Ruud Dirkson, and Thomas Peter
Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, https://doi.org/10.5194/acp-20-14273-2020, 2020
Short summary
Short summary
During boreal summer, anthropogenic sources yield the Asian Tropopause Aerosol Layer (ATAL), found in Asia between about 13 and 18 km altitude. Balloon-borne measurements of the ATAL conducted in northern India in 2016 show the strong variability of the ATAL. To explain its observed variability, model simulations are performed to deduce the origin of air masses on the Earth's surface, which is important to develop recommendations for regulations of anthropogenic surface emissions of the ATAL.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Cited articles
Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R.A.,
Gaitley, B. J., Crean, K. A., Remer, L. A., and Holben, B. N.: Comparison of
coincident multi angle imaging spectroradiometer and moderate resolution
imaging spectroradiometer aerosol optical depths over land and ocean scenes
containing AErosol RObotic NETwork sites, J. Geophys. Res., 110, D10S07,
https://doi.org/10.1029/2004JD004693, 2005.
Alam, K., Trautmann, T., and Blaschke, T.: Aerosol optical properties and
radiative forcing over mega-city Karachi, Atmos. Res., 101, 773–782, 2011.
Alexandrov, M. D., Schmid, B., Turner, D. D., Cairns, B., Oinas, V., Lacis,
A. A., Gutman, S. I., Westwater, Ed. R., Smirnov, A., and Eilers, J.:
Columnar water vapor retrievals from multi-filter rotating shadow-band
radiometer data, J. Geophys. Res., 114, D02306, https://doi.org/10.1029/2008JD010543,
2009.
Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225, https://doi.org/10.5194/acp-11-215-2011, 2011.
Aruna, K., Lakshmi Kumar, T. V., Krishna Murthy, B. V., Suresh Babu, S.,
Venkat Ratnam, M., and Narayana Rao, D.: Short wave Aerosol Radiative
Forcing estimates over a semi urban coastal environment in south-east India
and validation with surface flux measurements, Atmos. Environ., 125,
418–428, 2016.
Babu, S. S., Satheesh, S. K., and Moorthy, K. K.: Aerosol radiative forcing
due to enhanced black carbon at an urban site in India, Geophys. Res. Lett.
29, 1880, https://doi.org/10.1029/2002GL015826, 2002.
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, Jr., J. A., Hansen, J. E., and Hofman, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992.
Cheng, T., Wang, H., Xu, Y., Li, H., and Tian, L.: Climatology of aerosol
optical properties in northern China, Atmos. Environ., 40, 1495–1509,
2006a.
Cheng, T., Liu, Y., Lu, D., Xu, Y., and Li, H.: Aerosol properties and
radiative forcing in Hunshan Dake desert, northern China, Atmos. Environ.,
40, 2169–2179, 2006b.
Chew, B. N., Campbell, J. R., Reid, J. S., Giles, D. M., Welton, E. J.,
Salinas, S. V., and Liew, S. C.: Tropical cirrus cloud contamination in sun
photometer data, Atmos. Environ., 45, 6724–6731, https://doi.org/10.1016/j.atmosenv.2011.08.017, 2011.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in tropics: impact on
atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678,
1990.
Devara, P. C. S., Raj, P. E., Sharma, S., and Pandithurai, G.: Long-term
variations in lidar-observed urban aerosol characteristics and their
connection with meteorological parameters, Int. J. Climatol., 14, 581–591, 1994.
Devara, P. C. S., Maheskumar, R. S., Raj, P. E., Dani, K. K., and Sonbawne,
S. M.: Some features of aerosol optical depth, ozone and Precipitable water
content observed over land during the INDOEX-IFP 99, Meteorol. Z., 10, 123–130, 2001.
Devara, P. C. S., Maheskumar, R. S., Raj, P. E., Pandithurai, G., and Dani,
K. K.: Recent trends in aerosol climatology and air pollution as inferred
from multi-year Lidar observations over a tropical urban station, Int. J.
Climatol., 22, 435–449, 2002.
Devara, P. C. S., Saha, S. K., Ernest Raj, P., Sonbawne, S. M., Dani, K. K.,
Tiwari, K., and Maheskumar, R. S.: A four-year climatology of total column
tropical urban aerosol, ozone and water vapor distributions over Pune,
India, Aerosol Air Qual. Res., 5, 103–114, 2005.
Diner, D. J., Asner, G. P., Davies, R., Knyazikhin, Y., Muller, J. -P.,
Nolin, A. W., Pinty, B., Schaaf, C. B., and Stroeve, J.: New directions in
Earth observing: Scientific applications of multiangle remote sensing, B. Am. Meteorol. Soc., 80, 2209–2228, https://doi.org/10.1175/1520-0477(1999)080<2209:NDIEOS>2.0.CO;2, 1999.
Dubovik, O., Holben, B. N., Kaufman, Y. J., Yamasoe, M., Smirnov, A.,
Tanré, D., and Slutsker, I.: Single-scattering albedo of smoke retrieved
from the sky radiance and solar transmittance measured from ground, J.
Geophys. Res., 103, 31903–31924, 1998.
Dubovik, O., Holben, B. N., Eck, T., Smirnov, A., Kaufman, Y. J., King, M.,
Tanré, D., and Slutsker, I.: Variability of absorption and optical
properties of key aerosol types observed in worldwide locations, J. Atmos.
Sci., 59, 590–608, 2002.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res.,
104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Slutsker, I., Lobert, J.
M., and Ramanathan, V.: Column-integrated aerosol optical properties over
the Maldives during the northeast monsoon for 1998–2000, J. Geophys. Res.,
106, 555–566, 2001.
Ganguly, D., Jayaraman, A., and Gadhavi, H.: Physical and optical properties
of aerosols over an urban location in western India: seasonal variabilities,
J. Geophys. Res., 111, D24206, https://doi.org/10.1029/2006JD007392, 2006.
García, O. E., Díaz, A. M., Expósito, F. J, Díaz, J. P., Dobovik, O., Dubuisson, P., Roger, J.-C., Eck, T. F., Sinuk, A., Derimian, Y., Dutton, E. G., Schafer, J. S., Holben, B. N., and García, C.A.: Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements, J. Geophys. Res., 113, D21207, https://doi.org/10.1029/2008JD010211, 2008.
García, O. E., Díaz, J. P., Expósito, F. J., Díaz, A. M., Dubovik, O., Derimian, Y., Dubuisson, P., and Roger, J.-C.: Shortwave radiative forcing and efficiency of key aerosol types using AERONET data, Atmos. Chem. Phys., 12, 5129–5145, https://doi.org/10.5194/acp-12-5129-2012, 2012.
Giles, D. M., Holben, B. N., Tripathi, S. N., Eck, T. F., Newcomb, W. W.,
Slutsker, I., Dickerson, R. R., Thompson, A. M., Mattoo, S., Wang, S. H.,
Singh, R. P., Sinyuk, A., and Schafer, J. S.: Aerosol properties over the
Indo-Gangetic plain: a mesoscale perspective from the TIGERZ experiment, J.
Geophys. Res., 116, D18203, https://doi.org/10.1029/2011JD015809, 2011.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker,
I., Dickerson, R. R., and Thompson, A. M., and Schafer, J. S.: An analysis of
AERONET aerosol absorption properties and classifications representative of
aerosol source regions, J. Geophys. Res., 117, D17203, https://doi.org/10.1029/2012JD018127, 2012.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Gobbi, G. P., Kaufman, Y. J., Koren, I., and Eck, T. F.: Classification of aerosol properties derived from AERONET direct sun data, Atmos. Chem. Phys., 7, 453–458, https://doi.org/10.5194/acp-7-453-2007, 2007.
Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: Global warming in
the twenty-first century: An alternative scenario, P. Natl. Acad. Sci. USA, 97, 9875–9880, 2000.
He, Z. Z., Mao, J. K., and Han, X. S.: Non-parametric estimation of particle
size distribution from spectral extinction data with PCA approach, Powder
Technol., 325, 510–518, 2018.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Ragan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET–A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Holben, B. N.,Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I.,
Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F.,
Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D.,
Frouin, R., Halthore, R., Karneli, A., O`Neill, N. T., Pietras, C., Pinker,
R. T., Voss, K., and Zibordi, G.: An emerging ground–based aerosol
climatology: Aerosol optical depth from AERONET, J. Geophys. Res., 106,
12067–12097, https://doi.org/10.1029/2001JD900014, 2001.
Hoppel, W. A., Fitzgerald, J. W., and Larson, R. E.: Aerosol size distributions in air masses advecting off the east coast of the United States, J. Geophys. Res., 90, 2365–2379, 1985.
Hsu, N. C., Hermann, J. R., and Weaver, C.: Determination of radiative
forcing of Saharan dust using combined TOMS and ERBE data, J. Geophys. Res.,
108, 20649–20661, 2000.
Huang, J. F., Hsu, N. C., Tsay, S. C, Holben, B. N., Welton, E. J., Smirnov,
A., Hansell, R. A., Berkoff, T. A., Liu, Z. Y., Liu, G. R., Cambell, I. R.,
Liew, S. C., Jeong, M. J., and Bames, I. E.: Evaluations of cirrus
contamination and screening in ground aerosol observations using collocated
lidar systems, J. Geophys. Res., 117, D15204, https://doi.org/10.1029/2012JD017757, 2012.
Humera, B., Khan, A., Farrukh, C., Samina, B., Imran, S., and Thomas, B.:
Inter-comparison of MODIS, MISR, OMI and CALIPSO aerosol optical depth
retrievals for four locations on the Indo-Gangetic plains and validation
against AERONET data, Atmos. Environ., 111, 113–126, 2015.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2001: The
scientific basis-contribution of Working Group I to the third assessment
report of the Intergovernmental Panel on Climate Change, Cambridge Univ.
Press, New York, 2001.
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2007: The
scientific basis-contribution of Working Group I to the fourth assessment
report of the Intergovernmental Panel on Climate Change, Cambridge Univ.
Press, New York, 2007.
Kacenelenbogen, M., Léon, J.-F., Chiapello, I., and Tanré, D.: Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data, Atmos. Chem. Phys., 6, 4843–4849, https://doi.org/10.5194/acp-6-4843-2006, 2006.
Kaskaoutis, D. G., Badarinath, K. V. S., Kharol, S. K., Sharma, A. R., and
Kambezidis, H. D.: Variations in the aerosol optical properties and types
over the tropical urban site of Hyderabad, India, J. Geophys. Res., 114,
D22204, https://doi.org/10.1029/2009JD012423, 2009.
Kaskaoutis, D. G., Sinha, P. R., Vinoj, V., Kosmopoulos, P. G., Tripathi, S.
N., Misra, A., Sharma, M., and Singh, R. P.: Aerosol properties and
radiative forcing over Kanpur during severe aerosol loading conditions,
Atmos. Environ., 79, 7–19, 2013.
Khatri, P., Takamura, T., Nakajima, T., Estellés, V., Irie, H., Kuze, H., Campanelli, M., Sinyuk, A., Lee, S.‐M., Sohn, B. J., Padhithurai, G., Kim, S.-W., Yoon, S. C., Lozano, J. A. M., Hashimoto, M., Devara, P. C. S., and Manago, N.: Factors for inconsistent aerosol single scattering albedo between
SKYNET and AERONET, J. Geophys. Res.-Atmos., 121, 1859–1877, https://doi.org/10.1002/2015JD023976, 2016.
King, M. D., Kaufman, Y. J., Tanré, D., and Nakajima, T.: Remote sensing
of tropospheric aerosols from space: past, present, and future, B. Am.
Meteorol. Soc., 80, 2229–2259, 1999.
Koepke, P., Hess, M., Schult, I., and Shettle, E. P.: Global aerosol data
set, MPI Meteorol. Hamburg, Report No. 243, 44 pp., 1997.
Kumar, K. R., Sivakumar, V., Reddy, R. R., Gopal, K. R., and Adesina, A. J.:
Inferring wavelength dependence of AOD and Ångström exponent over a
sub-tropical station in South Africa using AERONET data: Influence of
meteorology, long-range transport and curvature effect, Sci. Total Environ.,
461, 397–408, 2013.
Kumar, K. R., Kang, N., and Yin, Y.: Classification of key aerosol types and
their frequency distributions based on satellite remote sensing data at an
industrially polluted city in the Yangtze River Delta, China, Int. J. Climatol., 38, 320–336, 2018.
Kumar, S., Devara, P. C. S., Dani, K. K., Sonbawne, S. M., and Saha, S. K.:
Sun-sky radiometer–derived column-integrated aerosol optical and physical
properties over a tropical urban station during 2004–2009, J. Geophys.
Res., 116, D10201, https://doi.org/10.1029/2010JD014944, 2011.
Kumar, S. and Devara, P. C. S.: Aerosol characterization: comparison
between measured and modelled surface radiative forcing over Bay of Bengal,
Remote. Sens. Lett., 3, 373–381, https://doi.org/10.1080/01431161.2011.600466, 2012a.
Kumar, S. and Devara, P. C. S.: A long-term study of aerosol modulation of
atmospheric and surface solar heating over Pune, India, Tellus B, 64, 18420,
https://doi.org/10.3402/tellusb.v64i0.18420, 2012b.
Lee, J., Kim, J., Song, C. H., Chun, Y., Sohn, B. J., and Holben, B. N.:
Characteristics of aerosol types from AERONET sunphotometer measurements,
Atmos. Environ., 44, 3110–3117, 2010.
Li, Z., Lee, K. -H., Wang, Y., Xin, J., Hao, and W.-M.: First
observation-based estimates of cloud-free aerosol radiative forcing across
China, J. Geophys. Res. Atmos., 115(D00K18), 2010.
Liou, K. N.: An Introduction to Atmospheric Radiation, Academic Press, Oxford, UK, 583 pp., https://doi.org/10.1256/003590003102695746, 2002.
Mishchenko, M. I., Geogdzhaye, I. V., Rossow, W. B., Cairns, B., Carlson, B.
E., Lacis, A. A., Liu, L., and Travis, L. D.: Long-term satellite record
reveals likely recent aerosol trend, Science, 315, 1543, https://doi.org/10.1126/science.1136709, 2007a.
Mishchenko, M. I., Cairns, B., Hansen, J. E., Travis, L. D., Kopp, G.,
Schueler, C. F., Fafaul, B. A., Hooker, R. J., Maring, H. B., and
Itchkawich, T.: Accurate monitoring of terrestrial aerosol and total solar
irradiance. Introducing the GLORY mission, B. Am. Meteorol. Soc., 80, 2229–2259, https://doi.org/10.1175/BAMS-88-5-677, 2007b.
O'Neill, N. T., Dubovik, O., and Eck, T. F.: Modified Ångström
coefficient for the characterization of sub-micrometer aerosols, Appl. Optics, 40, 2368–2375, https://doi.org/10.1364/AO.40.002368, 2001.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman,
S.: Spectral discrimination of coarse and fine mode optical depth, J.
Geophys. Res., 108, 4559–4573, https://doi.org/10.1029/2002JD002975, 2003.
Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P.
C. S., and Pinker, R. T.: Aerosol radiative forcing during dust events over
New Delhi, India, J. Geophys. Res., 113, D13209, https://doi.org/10.1029/2008JD009804, 2008.
Pathak, B., Kalita, G., Bhuyan, P., and Moorthy, K.: Aerosol temporal
characteristics and its impact on short wave radiative forcing at a location
in the northeast of India, J. Geophys. Res., 115, D19204,
https://doi.org/10.1029/2009JD013462, 2010.
Pathak, B., Bhuyan, P. K., Gogoi, M. M., and Bhuyan, K.: Seasonal
heterogeneity in aerosol types over Dibrugarh, North – Eastern India,
Atmos. Environ., 47, 307–315, https://doi.org/10.1016/j.atmosenv.2011.10.061, 2012.
Ramachandran, S. and Cherian, R.: Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005, J. Geophys. Res., 113, D08207, https://doi.org/10.1029/2007JD008560, 2008.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kledman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products,
and validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O., and Strawa, A.: Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, 2010.
Schmid, J., Michalsky, J. J., Slater, D. W., Bernard, J. C., Halthore, R.
N., Liljegren, J. C., Holben, B. N., Eck, T. F., Livingston, J. M., Russell,
J. B., Ingold, T., and Slustsker, I.: Comparison of columnar water-vapor
measurements from solar transmittance methods, Appl. Optics, 40, 1886–1896,
https://doi.org/10.1364/AO.40.001886, 2001.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and
bimodal aerosol size distributions, J. Geophys. Res., 111, D07207, https://doi.org/10.1029/2005JD006328, 2006.
Singh, R. P., Dey, S., Tripathi, S. N., Tare, V., and Holben, B. N.:
Variability of aerosol parameters over Kanpur, Northern India, J. Geophys.
Res., 109, D23206, https://doi.org/10.1029/2004JD004966, 2004.
Sinha, P. R., Kaskaoutis, D. G., Manchanda, R. K., and Sreenivasan, S.: Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques, Ann. Geophys., 30, 1393–1410, https://doi.org/10.5194/angeo-30-1393-2012, 2012.
Sinyuk, A., Torres, O., and Dubovik, O.: Combined use of satellite and
surface observations to infer the imaginary part of the refractive index of
Saharan dust, Geophys. Res. Lett., 30, 1081, https://doi.org/10.1029/2002GL016189,
2003.
Sinyuk, A., Dubovik, O., Holben, B. N., Eck, T. F., Breon, F-M., Martonchik,
J., Khan, R., Diner, D. J., Verrmote, E. F., Roger, J.-C., Lapyonok, T.,
and Ilya, S.: Simultaneous retrieval of aerosol and surface properties from
a combination of AERONET and satellite data, Remote Sens. Environ., 107,
90–108, 2007.
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.: Cloud
screening and quality control algorithms for the AERONET data base, Remote
Sens. Environ., 73, 337–349, 2000.
Smirnov, A., Holben, B. N., Dubovic, O, O'Neill, N. T., Eck, T. F.,
Westphal, D. L., Goroth, A. K., Pietras, C., and Slutsker, I.: Atmospheric
aerosol optical properties in the Persian Gulf, J. Atmos. Sci., 59,
620–634, https://doi.org/10.1175/1520-0469(2002)059<0620:AAOPIT>2.0.CO;2, 2002a.
Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovic, O., Eck, T. F.,
Slutsker, I., Pietras, C., and Halthore, R. N.: Optical properties of
atmospheric aerosol in maritime environments, J. Atmos. Sci., 59, 501–523,
https://doi.org/10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2, 2002b.
Smirnov, A., Holben, B. N., Lyapustin, A., Slutsker, I., and Eck, T. F.:
AERONET processing algorithms refinement, AERONET 2004 Workshop, 10–14 May 2004, El Arenosillo, Spain, 2004.
Streets, D. G., Yan, F., Chin, M., Diehl, T., Mahowald, N., Schultz, M., Wild, M., Wu, Y., and Yu, C.: Anthropogenic and natural contributions to
regional trends in aerosol optical depth, 1980–2006, J. Geophys. Res., 114,
D00D18, https://doi.org/10.1029/2008JD011624, 2009.
Suresh Babu, S., Krishna Moorthy, K., and Satheesh, S. K.: Temporal heterogeneity in aerosol characteristics and the resulting radiative impacts at a tropical coastal station – Part 2: Direct short wave radiative forcing, Ann. Geophys., 25, 2309–2320, https://doi.org/10.5194/angeo-25-2309-2007, 2007.
Tan, H., Liu, L., Fan, S., Li, F., Yin, Y., Cai, M., and Chan, P. W.:
Aerosol optical properties and mixing state of black carbon in the Pearl
River Delta, China, Atmos. Environ., 131, 196–208, 2016.
Tanré, D., Bréon, F. M., Deuzé, J. L., Herman, M., Goloub, P.,
Nadal, F., and Marchand, A.: Global observation of anthropogenic aerosols
from satellite, Geophys. Res. Lett., 28, 4555–4558, 2001.
Tiwari, S., Kaskaoutis, D., Soni, V. K., Attri, S. D., and Singh, A. K.:
Aerosol columnar characteristics and their heterogeneous nature over
Varanasi, in the central Ganges valley, Environ. Sci. Pollut. R., 25, 24726–24745, https://doi.org/10.1007/s11356-018-2502-4, 2018.
Tripathi, S. N., Dey, S., Chandel, A., Srivastava, S., Singh, R. P., and Holben, B. N.: Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India, Ann. Geophys., 23, 1093–1101, https://doi.org/10.5194/angeo-23-1093-2005, 2005.
Verma, S., Prakash, D., Ricaud, P., Payra, S., Attie, J.-L., and Soni, M.:
A new classification of aerosol sources and types as measured over Jaipur,
India, Aerosol Air Qual. Res., 15, 985–993, 2015.
Vijayakumar, K., Devara, P. C. S., and Simha, C. P.: Aerosol features during
drought and normal monsoon years: A study undertaken with multi-platform
measurements over a tropical urban site. Aerosol Air Qual. Res., 12,
1444–1458, https://doi.org/10.4209/aaqr.2012.01.0005, 2012.
Vijayakumar, K. and Devara, P. C. S.: Variations in aerosol optical and
microphysical properties during an Indian festival observed with space-borne
and ground-based observations, Atmósfera, 25, 381–395, 2012.
Vijayakumar, K. and Devara, P. C. S.: Study of aerosol optical depth,
ozone, and precipitable water vapour content over Sinhagad, a high-altitude
station in the Western Ghats, Int. J. Remote Sens., 34, 613–630, 2013.
Vijayakumar, K., Devara, P. C. S., and Sonbawne, S. M.: Type-segregated
aerosol effects on regional monsoon activity: A study using ground-based
experiments and model simulations, Atmos. Environ., 99, 650–659, 2014.
Wang, M., Zhang, R., and Pu, Y.: Recent researches on aerosol in China, Adv.
Atmos. Sci., 18, 576–586, 2001.
Wild, M., Trüssel, B., Ohmura, A., Long, C. N., König-Langlo, G.,
Dutton, E. G., and Tsvetkov, A.: Global dimming and brightening: An update
beyond 2000, J. Geophys. Res., 114, D00D13, https://doi.org/10.1029/2008JD011382, 2009.
WMO: Radiation Commission of IAPAM Meeting of Experts on Aerosol and Their
Climatic Effects,Williamsburg, VA, WCP55, 28–30, 1983.
Wu, L. and Zeng, Q.-C.: Study on probability distributions of
multi-timescale aerosol optical depth using AERONET data, Atmospheric and Oceanic Science Letters, 4, 216–222, 2011.
Xia, X.: Parameterization of clear-sky surface irradiance and its
implications for estimation of aerosol direct radiative effect and aerosol
optical depth, Scientific Reports, 5, 14376, https://doi.org/10.1038/srep14376, 2015.
Xie, Y., Li, Z., and Li, L.: Aerosol optical, microphysical, chemical and
radiative properties of high aerosol load cases over the Arctic based on
AERONET measurements, Scientific Reports, 8, 9376, https://doi.org/10.1038/s41598-018-27744-z, 2018.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Zege, E. P., Ivanov, A. P., and Katzev, I. L.: Image transfer through a
scattering medium, Springer, Berlin, New York, USA, 1991.
Zhao, T. X., Laszlo, P. I., Guo, W., Heidinger, A., Cao, C., Jelenak, A., Tarpley, D., and Sullivan, J.: Study of long-term trend in aerosol
optical thickness observed from operational AVHRR satellite instrument, J.
Geophys. Res., 113, D07201, https://doi.org/10.1029/2007JD009061, 2008.
Short summary
The direct-Sun and inversion products of urban atmospheric aerosols, obtained from a Cimel Sun–sky radiometer in Pune, India, under the AERONET program since October 2004, have been reported in this paper. The mean seasonal variations in AOD from cloud-free days indicated greater values during the monsoon season, revealing dominance of hygroscopic aerosols over the station. Such results are sparse in India and are important for estimating aerosol radiative forcing and validating climate models.
The direct-Sun and inversion products of urban atmospheric aerosols, obtained from a Cimel...