Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2317-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-2317-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere
Iris de Krom
CORRESPONDING AUTHOR
VSL, Department of Chemistry, Mass, Pressure and Viscosity, Thijsseweg 11, 2629 JA Delft, the Netherlands
Wijnand Bavius
VSL, Department of Chemistry, Mass, Pressure and Viscosity, Thijsseweg 11, 2629 JA Delft, the Netherlands
Ruben Ziel
VSL, Department of Chemistry, Mass, Pressure and Viscosity, Thijsseweg 11, 2629 JA Delft, the Netherlands
Elizabeth A. McGhee
Environment Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
Richard J. C. Brown
Environment Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
Igor Živković
Jozef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 39, 1000 Ljubljana, Slovenia
Jan Gačnik
Jozef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 39, 1000 Ljubljana, Slovenia
Vesna Fajon
Jozef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 39, 1000 Ljubljana, Slovenia
Jože Kotnik
Jozef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 39, 1000 Ljubljana, Slovenia
Milena Horvat
Jozef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 39, 1000 Ljubljana, Slovenia
VSL, Department of Chemistry, Mass, Pressure and Viscosity, Thijsseweg 11, 2629 JA Delft, the Netherlands
Related authors
No articles found.
Sreekanth Vijayakumaran Nair, Saeed Waqar Ali, Jan Gačnik, Igor Živković, Teodor-Daniel Andron, Oleg Travnikov, and Milena Horvat
EGUsphere, https://doi.org/10.5194/egusphere-2025-2451, https://doi.org/10.5194/egusphere-2025-2451, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We studied how well two widely used methods capture oxidized mercury from the air, a key step for its quantification. Our research showed that denuders can lose a significant amount of mercury during sampling, leading to underestimation, while cation exchange membranes were more reliable in retaining mercury. These results highlight the need for improved measurement techniques to ensure accurate data, which is essential for evaluating mercury pollution and shaping environmental policy.
Teodor D. Andron, Warren T. Corns, Igor Živković, Saeed Waqar Ali, Sreekanth Vijayakumaran Nair, and Milena Horvat
Atmos. Meas. Tech., 17, 1217–1228, https://doi.org/10.5194/amt-17-1217-2024, https://doi.org/10.5194/amt-17-1217-2024, 2024
Short summary
Short summary
Atmospheric mercury monitoring is an important activity in order to model the global trajectory of this toxic element and to assess if certain areas are polluted or not in accordance to global guidelines. One of the analysers tested in this work is globally used in this regard due to its practicality compared with other devices. Because it is only calibrated by the manufacturer at very high concentrations, we wanted to see how it performs at ambient mercury concentrations.
Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Radojko Jaćimović, Jože Kotnik, Gianmarco De Feo, Matthew A. Dexter, Warren T. Corns, and Milena Horvat
Atmos. Meas. Tech., 14, 6619–6631, https://doi.org/10.5194/amt-14-6619-2021, https://doi.org/10.5194/amt-14-6619-2021, 2021
Short summary
Short summary
Atmospheric mercury and knowledge of its transformations and processes are of great importance for lowering its anthropogenic emissions. To ensure that, it is crucial to have a tested and validated measurement procedure. Since this is not always the case, we performed experiments that provided insight into commonly used atmospheric mercury sampling methods. The results showed that some sampling methods are unsuitable, and some are useful if we consider the results obtained from this work.
Cited articles
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, and OIML: Guide to the expression of uncertainty in measurement JCGM 100:2008, GUM 1995 with Minor Corrections (BIPM), ISO, Geneva, Switzerland, 2008.
Brown, A. S., Brown, R. J. C., Corns, W. T., and Stockwell, P. B.: Establishing SI traceability for measurements of mercury vapour, Analyst, 133, 946–953, https://doi.org/10.1039/B803724H, 2008.
Brown, A. S., Brown, R. J. C., Dexter, M. A., Corns, W. T., and Stockwell, P. B.: A novel automatic method for the measurement of mercury vapour in ambient air, and comparison of uncertainty with established semi-automatic and manual methods, Anal. Methods, 2, 954–966, https://doi.org/10.1039/C0AY00058B, 2010.
Brown, R. J. C., Brown, A. S., Corns, W. T., and Stockwell, P. B.: Accurate calibration of mercury vapour indicators for occupational exposure measurements using a dynamic mercury vapour generator, Instrum. Sci. Technol., 36, 611–622, https://doi.org/10.1080/10739140802448309, 2008a.
Brown, R. J. C., Brown, A. S., Yardley, R. E., Corns, W. T., and Stockwell, P. B.: A practical uncertainty budget for ambient mercury vapour measurement, Atmospheric Environment, 42, 2504-2517, https://doi.org/10.1016/j.atmosenv.2007.12.012, 2008b.
Brown, R. J. C., Kumar, Y., Brown, A. S., and Kim, K. H.: Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias, Environ. Sci. Technol., 45, 7812–7818, https://doi.org/10.1021/es201454u, 2011.
Brown, R. J. C., Kumar, Y., Brown, A. S., Dexter, M. A., and Corns, W. T.: Field comparison of manual and semi-automatic methods for the measurement of total gaseous mercury in ambient air and assessment of equivalence, J. Environ. Monit., 14, 657–665, https://doi.org/10.1039/C2EM10719H, 2012.
Brown, R. J. C., Braysher, E. C., McGhee, E. A., Goddard, S. L., Ent, H., Kim, K. H., and Nielsen, J.: Characterising and reducing the blank response from mercury vapour sorbent tubes, Anal. Methods, 9, 2654–2659, https://doi.org/10.1039/C7AY00451F, 2017.
de Krom, I.: Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere, Zenodo, https://doi.org/10.5281/zenodo.4616620, 2021.
de Krom, I., Bavius, W., Ziel, R. P., Efremov, E., van Meer, D., van Otterloo, R. P., van Andel, I., van Osselen, D., Heemskerk, M., Corns, W. T., and Ent, H.: Primary mercury gas standard for the calibration of mercury measurements, Measurement, 169, 108351, https://doi.org/10.1016/j.measurement.2020.108351, 2020.
Dumarey, R., Heindryckx, R., Dams, R., and Hoste, J.: Determination of volatile mercury compounds in air with the coleman mercury analyzer system, Anal. Chim. Acta, 107, 159–167, https://doi.org/10.1016/S0003-2670(01)93206-4, 1979.
Dumarey, R., Temmerman, E., Dams, R., and Hoste, J.: The accuracy of the vapour-injection calibration method for the determination of mercury by amalgamation/cold-vapour atomic absorption spectrometry, Anal. Chim. Acta, 170, 337–340 https://doi.org/10.1016/S0003-2670(00)81759-6, 1985.
Dumarey, R., Brown, R. J. C., Corns, W. T., Brown, A. S., and Stockwell, P. B.: Elemental mercury vapour in air: the origins and validation of the “Dumarey equation” describing the mass concentration at saturation, Accred. Qual. Assur., 15, 409–414, https://doi.org/10.1007/s00769-010-0645-1, 2010.
EN 15852:2010: Ambient air quality – Standard method for the determination of total gaseous mercury, CEN, Brussels, Belgium, 2010.
Ent, H., van Andel, I., Heemskerk, M., van Otterloo, R. P., Bavius, W., Baldan, A., Horvat, M., Brown, R. J. C., and Quétel, C. R.: A gravimetric approach to providing SI traceability for concentration measurement results of mercury vapor at ambient air levels, Meas. Sci. Technol., 25, 115801, https://doi.org/10.1088/0957-0233/25/11/115801, 2014.
EPA: Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, available at: https://www.epa.gov/sites/production/files/2015-08/documents/method_1631e_2002.pdf (last access: 18 March 2021), 2002.
EPA: Method 30B – mercury sorbent trap procedure, available at: https://www.epa.gov/sites/production/files/2017-08/documents/method_30b.pdf (last access: 18 March 2021), 2017.
Global mercury assessment 2018: https://wedocs.unep.org/bitstream/handle/20.500.11822/27579/GMA2018.pdf (last access: 18 March 2021), 2018a.
Global mercury assessment 2018: https://www.unenvironment.org/resources/publication/global-mercury-assessment-2018 (last access: 18 March 2021), 2018b.
Huber, M. L., Laesecke, A., and Friend, D. G.: Correlation for the vapor pressure of mercury, Indust. Eng. Chem., 45, 7351–7361, https://doi.org/10.1021/ie060560s, 2006.
ISO 16017-1:2000: Indoor, ambient and workplace air – Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography – Part 1: Pumped sampling, ISO, Geneva, Switzerland, 2000.
ISO 6145-8:2005: Gas analysis – Preparation of calibration gas mixtures using dynamic volumetric methods – Part 8: Diffusion method, ISO, Geneva, Switzerland, 2005.
ISO 6145-9:2009 Gas analysis – Preparation of calibration gas mixtures using dynamic volumetric methods – Part 9: Saturation method, ISO, Geneva, Switzerland, 2009.
ISO 5725-2:2019: Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, ISO, Geneva, Switzerland, 2019.
ISO/IEC 17043:2010: Conformity assessment – General requirements for proficiency testing, ISO, Geneva, Switzerland, 2010.
ISO/IEC 17025:2017: General requirements for the competence of testing and calibration laboratories, ISO, Geneva, Switzerland, 2017.
NVN-CEN/TS 17286:2019: Stationary source emissions – Mercury monitoring using sorbent traps, CEN, Brussels, Belgium, 2019.
Pandey, S. K., Kim, K. H., and Brown, R. J. C.: Measurement techniques for mercury species in ambient air, TrAC, Trends Anal. Chem., 30, 899–917, https://doi.org/10.1016/j.trac.2011.01.017, 2011.
Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I. M., Pacyna, J., Sprovieri, F., and Sunderland, E. M.: Toward the next generation of air quality monitoring: mercury, Atmos. Environ., 80, 599–611, https://doi.org/10.1016/j.atmosenv.2013.06.053, 2013.
Quétel, C. R., Zampella, M., Brown, R. J. C., Ent, H., Horvat, M., Paredes, E., and Tunc, M.: International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure, Anal. Chem., 86, 7819–7827, https://doi.org/10.1021/ac5018875, 2014.
Quétel, C. R., Zampella, M., and Brown, R. J. C.: Temperature dependence of Hg vapour mass concentration at saturation in air: New SI traceable results between 15 and 30 ∘C, Trends Anal. Chem., 85, 81–88, https://doi.org/10.1016/j.trac.2015.12.010, 2016.
Shulupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., and Stroganov, A.: Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples, Fuel Proc. Techn., 85, 473–485, https://doi.org/10.1016/j.fuproc.2003.11.003, 2004.
Srivastava, A. and Hodges, J. T.: Development of a high-resolution laser absorption spectroscopy method with application to the determination of absolute concentration of gaseous elemental mercury in air, Anal. Chem., 90, 6781–6788, https://doi.org/10.1021/acs.analchem.8b00757, 2018.
Srivastava, A., Long, S. E., Norris, J. E., Bryan, C. E., Carney, J., and Hodges, J. T.: Comparison of primary laser spectroscopy and mass spectrometry methods for measuring mass concentration of gaseous elemental mercury, Anal. Chem, 93, 1050–1058, https://doi.org/10.1021/acs.analchem.0c04002, 2020.
Živković, I., Berisha, S., Kotnik, J., Jagodic, M., and Horvat, M.: Traceable determination of atmospheric mercury using iodinated activated carbon traps, Atmosphere, 11, 780, https://doi.org/10.3390/atmos11080780, 2020.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(551 KB) - Full-text XML
Short summary
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the results of comparisons are presented with current calibration methods maintained, using the bell jar in combination with the Dumarey equation or NIST liquid standard reference material. The results show that the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the...