Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2317-2021
https://doi.org/10.5194/amt-14-2317-2021
Research article
 | 
25 Mar 2021
Research article |  | 25 Mar 2021

Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere

Iris de Krom, Wijnand Bavius, Ruben Ziel, Elizabeth A. McGhee, Richard J. C. Brown, Igor Živković, Jan Gačnik, Vesna Fajon, Jože Kotnik, Milena Horvat, and Hugo Ent

Related authors

Stability and selectivity of pre-concentration methods for gaseous oxidized mercury in the air
Sreekanth Vijayakumaran Nair, Saeed Waqar Ali, Jan Gačnik, Igor Živković, Teodor-Daniel Andron, Oleg Travnikov, and Milena Horvat
EGUsphere, https://doi.org/10.5194/egusphere-2025-2451,https://doi.org/10.5194/egusphere-2025-2451, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
A traceable and continuous flow calibration method for gaseous elemental mercury at low ambient concentrations
Teodor D. Andron, Warren T. Corns, Igor Živković, Saeed Waqar Ali, Sreekanth Vijayakumaran Nair, and Milena Horvat
Atmos. Meas. Tech., 17, 1217–1228, https://doi.org/10.5194/amt-17-1217-2024,https://doi.org/10.5194/amt-17-1217-2024, 2024
Short summary
Behavior of KCl sorbent traps and KCl trapping solutions used for atmospheric mercury speciation: stability and specificity
Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Radojko Jaćimović, Jože Kotnik, Gianmarco De Feo, Matthew A. Dexter, Warren T. Corns, and Milena Horvat
Atmos. Meas. Tech., 14, 6619–6631, https://doi.org/10.5194/amt-14-6619-2021,https://doi.org/10.5194/amt-14-6619-2021, 2021
Short summary

Cited articles

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, and OIML: Guide to the expression of uncertainty in measurement JCGM 100:2008, GUM 1995 with Minor Corrections (BIPM), ISO, Geneva, Switzerland, 2008. 
Brown, A. S., Brown, R. J. C., Corns, W. T., and Stockwell, P. B.: Establishing SI traceability for measurements of mercury vapour, Analyst, 133, 946–953, https://doi.org/10.1039/B803724H, 2008. 
Brown, A. S., Brown, R. J. C., Dexter, M. A., Corns, W. T., and Stockwell, P. B.: A novel automatic method for the measurement of mercury vapour in ambient air, and comparison of uncertainty with established semi-automatic and manual methods, Anal. Methods, 2, 954–966, https://doi.org/10.1039/C0AY00058B, 2010. 
Brown, R. J. C., Brown, A. S., Corns, W. T., and Stockwell, P. B.: Accurate calibration of mercury vapour indicators for occupational exposure measurements using a dynamic mercury vapour generator, Instrum. Sci. Technol., 36, 611–622, https://doi.org/10.1080/10739140802448309, 2008a. 
Brown, R. J. C., Brown, A. S., Yardley, R. E., Corns, W. T., and Stockwell, P. B.: A practical uncertainty budget for ambient mercury vapour measurement, Atmospheric Environment, 42, 2504-2517, https://doi.org/10.1016/j.atmosenv.2007.12.012, 2008b. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the results of comparisons are presented with current calibration methods maintained, using the bell jar in combination with the Dumarey equation or NIST liquid standard reference material. The results show that the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
Share