Research article
15 Apr 2021
Research article
| 15 Apr 2021
A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions
Christophe Leroy-Dos Santos et al.
Related authors
No articles found.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Fréderic Prié, Barbara Stenni, Elise Fourré, Hans-Christian Steen Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
EGUsphere, https://doi.org/10.5194/egusphere-2022-168, https://doi.org/10.5194/egusphere-2022-168, 2022
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This manuscript presents a compilation of high resolution (11 cm) water isotopic records including published and new measurements over the last 800 000 years on the EPICA Dome C ice core, Antarctica. Using this new water isotopes (δ18O and δD) combined dataset, we study the variability and possible influence of diffusion at multi-decadal to multi-centennial scale. We observe a stronger variability on the onset of the interglacial interval corresponding to a warm period.
Clémence Paul, Clément Piel, Joana Sauze, Nicolas Pasquier, Frédéric Prié, Sébastien Devidal, Roxanne Jacob, Arnaud Dapoigny, Olivier Jossoud, Alexandru Milcu, and Amaëlle Landais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-324, https://doi.org/10.5194/bg-2021-324, 2021
Revised manuscript under review for BG
Short summary
Short summary
To improve the interpretation of the δ18Oatm and Δ17O of O2 in air bubbles in ice core, we need to better quantify the oxygen fractionation coefficients associated with biological processes. We performed a simplified analog of the terrestrial biosphere in a closed chamber. We found a respiration fractionation in agreement with the previous estimates at the micro-organism scale. And a terrestrial photosynthetic fractionation was found. This has an impact on the estimation of the Dole effect.
Clément Outrequin, Anne Alexandre, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Amaelle Landais, Martine Couapel, Jean-Charles Mazur, Christophe Peugeot, Monique Pierre, Frédéric Prié, Jacques Roy, Corinne Sonzogni, and Claudia Voigt
Clim. Past, 17, 1881–1902, https://doi.org/10.5194/cp-17-1881-2021, https://doi.org/10.5194/cp-17-1881-2021, 2021
Short summary
Short summary
Continental atmospheric humidity is a key climate parameter poorly captured by global climate models. Model–data comparison approaches that are applicable beyond the instrumental period are essential to progress on this issue but face a lack of quantitative relative humidity proxies. Here, we calibrate the triple oxygen isotope composition of phytoliths as a new quantitative proxy of continental relative humidity suitable for past climate reconstructions.
Erik Kerstel
Atmos. Meas. Tech., 14, 4657–4667, https://doi.org/10.5194/amt-14-4657-2021, https://doi.org/10.5194/amt-14-4657-2021, 2021
Short summary
Short summary
A model was developed to quantitatively describe the dynamics, in terms of vapor-phase water concentration and isotope ratios, of nanoliter-droplet evaporation at the end of a syringe needle. Such a low humidity generator can be used to calibrate laser-based water isotope analyzers, e.g., in Antarctica. We show that modeling of experimental data constrains isotope fractionation factors and the evaporation rate to physically realistic values in good agreement with available literature values.
Jinhwa Shin, Christoph Nehrbass-Ahles, Roberto Grilli, Jai Chowdhry Beeman, Frédéric Parrenin, Grégory Teste, Amaelle Landais, Loïc Schmidely, Lucas Silva, Jochen Schmitt, Bernhard Bereiter, Thomas F. Stocker, Hubertus Fischer, and Jérôme Chappellaz
Clim. Past, 16, 2203–2219, https://doi.org/10.5194/cp-16-2203-2020, https://doi.org/10.5194/cp-16-2203-2020, 2020
Short summary
Short summary
We reconstruct atmospheric CO2 from the EPICA Dome C ice core during Marine Isotope Stage 6 (185–135 ka) to understand carbon mechanisms under the different boundary conditions of the climate system. The amplitude of CO2 is highly determined by the Northern Hemisphere stadial duration. Carbon dioxide maxima show different lags with respect to the corresponding abrupt CH4 jumps, the latter reflecting rapid warming in the Northern Hemisphere.
Mathieu Casado, Thomas Münch, and Thomas Laepple
Clim. Past, 16, 1581–1598, https://doi.org/10.5194/cp-16-1581-2020, https://doi.org/10.5194/cp-16-1581-2020, 2020
Short summary
Short summary
The isotopic composition in ice cores from Antarctica is usually interpreted as a temperature proxy. Using a forward model, we show how different the signal in ice cores and the actual climatic signal are. Precipitation intermittency and diffusion do indeed affect the archived signal, leading to the reshuffling of the signal which limits the ability to reconstruct high-resolution climatic variations with ice cores.
Anders Svensson, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Thomas Blunier, Sune O. Rasmussen, Bo M. Vinther, Paul Vallelonga, Emilie Capron, Vasileios Gkinis, Eliza Cook, Helle Astrid Kjær, Raimund Muscheler, Sepp Kipfstuhl, Frank Wilhelms, Thomas F. Stocker, Hubertus Fischer, Florian Adolphi, Tobias Erhardt, Michael Sigl, Amaelle Landais, Frédéric Parrenin, Christo Buizert, Joseph R. McConnell, Mirko Severi, Robert Mulvaney, and Matthias Bigler
Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, https://doi.org/10.5194/cp-16-1565-2020, 2020
Short summary
Short summary
We identify signatures of large bipolar volcanic eruptions in Greenland and Antarctic ice cores during the last glacial period, which allows for a precise temporal alignment of the ice cores. Thereby the exact timing of unexplained, abrupt climatic changes occurring during the last glacial period can be determined in a global context. The study thus provides a step towards a full understanding of elements of the climate system that may also play an important role in the future.
Mathieu Casado, Gwenaëlle Gremion, Paul Rosenbaum, Jilda Alicia Caccavo, Kelsey Aho, Nicolas Champollion, Sarah L. Connors, Adrian Dahood, Alfonso Fernandez, Martine Lizotte, Katja Mintenbeck, Elvira Poloczanska, and Gerlis Fugmann
Geosci. Commun., 3, 89–97, https://doi.org/10.5194/gc-3-89-2020, https://doi.org/10.5194/gc-3-89-2020, 2020
Short summary
Short summary
Early-career scientists (ECSs) are rarely invited to act as peer reviewers. Participating in a group peer review of the IPCC Special Report on Ocean and Cryosphere in a Changing Climate, PhD students spent more time reviewing than more established scientists and provided a similar proportion of substantive comments. By soliciting and including ECSs in peer review, the scientific community would reduce the burden on more established scientists and may improve the quality of that process.
Pascal Bohleber, Mathieu Casado, Kirsti Ashworth, Chelsey A. Baker, Anna Belcher, Jilda Alicia Caccavo, Holly E. Jenkins, Erin Satterthwaite, Andrea Spolaor, and V. Holly L. Winton
Adv. Geosci., 53, 1–14, https://doi.org/10.5194/adgeo-53-1-2020, https://doi.org/10.5194/adgeo-53-1-2020, 2020
Short summary
Short summary
International Early Career Networks (ECN) are global voluntary communities of Early Career Scientists (ECS) aiming to advance the careers of ECS and to improve their inclusion into the international scientific community. We use member surveys alongside with case studies from well-established and long-term networks to elucidate the attributes that make a successful, sustainable ECN, and propose best practices for developing ECN successfully.
Anne Alexandre, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, Jean-Charles Mazur, Monique Pierre, Frédéric Prié, Christine Vallet-Coulomb, Clément Outrequin, and Jacques Roy
Biogeosciences, 16, 4613–4625, https://doi.org/10.5194/bg-16-4613-2019, https://doi.org/10.5194/bg-16-4613-2019, 2019
Short summary
Short summary
This calibration study shows that despite isotope heterogeneity along grass leaves, the triple oxygen isotope composition of bulk leaf phytoliths can be estimated from the Craig and Gordon model, a mixing equation and a mean leaf water–phytolith fractionation exponent (lambda) of 0.521. The results strengthen the reliability of the 17O–excess of phytoliths to be used as a proxy of atmospheric relative humidity and open tracks for its use as an imprint of leaf water 17O–excess.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Loic Lechevallier, Roberto Grilli, Erik Kerstel, Daniele Romanini, and Jérôme Chappellaz
Atmos. Meas. Tech., 12, 3101–3109, https://doi.org/10.5194/amt-12-3101-2019, https://doi.org/10.5194/amt-12-3101-2019, 2019
Short summary
Short summary
In this work we describe a highly sensitive optical spectrometer for simultaneous measurement of methane, ethane, and the isotopic composition of methane. The coupling of the spectrometer with a dissolved gas extraction system will provide a suitable tool for understanding the origins of the dissolved hydrocarbons and discriminate between the different sources (e.g., biogenic vs. thermogenic).
Amaëlle Landais, Emilie Capron, Valérie Masson-Delmotte, Samuel Toucanne, Rachael Rhodes, Trevor Popp, Bo Vinther, Bénédicte Minster, and Frédéric Prié
Clim. Past, 14, 1405–1415, https://doi.org/10.5194/cp-14-1405-2018, https://doi.org/10.5194/cp-14-1405-2018, 2018
Short summary
Short summary
During the last glacial–interglacial climate transition (120 000 to 10 000 years before present), Greenland climate and midlatitude North Atlantic climate and water cycle vary in phase over the succession of millennial events. We identify here one notable exception to this behavior with a decoupling unambiguously identified through a combination of water isotopic tracers measured in a Greenland ice core. The midlatitude moisture source becomes warmer and wetter at 16 200 years before present.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Anne Alexandre, Amarelle Landais, Christine Vallet-Coulomb, Clément Piel, Sébastien Devidal, Sandrine Pauchet, Corinne Sonzogni, Martine Couapel, Marine Pasturel, Pauline Cornuault, Jingming Xin, Jean-Charles Mazur, Frédéric Prié, Ilhem Bentaleb, Elizabeth Webb, Françoise Chalié, and Jacques Roy
Biogeosciences, 15, 3223–3241, https://doi.org/10.5194/bg-15-3223-2018, https://doi.org/10.5194/bg-15-3223-2018, 2018
Short summary
Short summary
There is a lack of proxies suitable for reconstructing, in a quantitative way, past changes in continental atmospheric humidity, which is a key climate parameter. Here, we demonstrate through climate chamber and climate transect calibrations that the triple oxygen isotope composition of phytoliths offers a potential for reconstructing changes in relative humidity.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valerie Masson-Delmotte, and Jean Jouzel
The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, https://doi.org/10.5194/tc-12-1745-2018, 2018
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival processes of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hoerhold, Amaelle Landais, and Sepp Kipfstuhl
The Cryosphere, 12, 169–187, https://doi.org/10.5194/tc-12-169-2018, https://doi.org/10.5194/tc-12-169-2018, 2018
Short summary
Short summary
We explain why snow pits across different sites in East Antarctica show visually similar isotopic variations. We argue that the similarity and the apparent cycles of around 20 cm in the δD and δ18O variations are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion. The near constancy of the diffusion length across many ice-coring sites explains why the structure and cycle length is largely independent of the accumulation conditions.
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
Clim. Past, 13, 1815–1830, https://doi.org/10.5194/cp-13-1815-2017, https://doi.org/10.5194/cp-13-1815-2017, 2017
Short summary
Short summary
We measured methane concentrations from a polar ice core to quantify the differences between the ice record and the past true atmospheric conditions. Two effects were investigated by combining data analysis and modeling: the stratification of polar snow before gas enclosure driving chronological hiatuses in the record and the gradual formation of bubbles in the ice attenuating fast atmospheric variations. This study will contribute to improving future climatic interpretations from ice archives.
Camille Bréant, Patricia Martinerie, Anaïs Orsi, Laurent Arnaud, and Amaëlle Landais
Clim. Past, 13, 833–853, https://doi.org/10.5194/cp-13-833-2017, https://doi.org/10.5194/cp-13-833-2017, 2017
Short summary
Short summary
All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica, to the LGGE firn densification model.
Grant M. Raisbeck, Alexandre Cauquoin, Jean Jouzel, Amaelle Landais, Jean-Robert Petit, Vladimir Y. Lipenkov, Juerg Beer, Hans-Arno Synal, Hans Oerter, Sigfus J. Johnsen, Jorgen P. Steffensen, Anders Svensson, and Françoise Yiou
Clim. Past, 13, 217–229, https://doi.org/10.5194/cp-13-217-2017, https://doi.org/10.5194/cp-13-217-2017, 2017
Short summary
Short summary
Using records of a long-lived radioactive nuclide (10Be) that is formed globally in the atmosphere and deposited within a few years to the earth’s surface, we have synchronized three Antarctic ice cores to one from Greenland. This permits the climate and other environmental parameters registered in these ice cores to be put on a common timescale with a precision of a few decades, thus allowing different models and mechanisms associated with these parameters to be tested with the same precision.
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-263, https://doi.org/10.5194/tc-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
Ice core isotopic records rely on the knowledge of the processes involved in the archival of the snow. In the East Antarctic Plateau, post-deposition processes strongly affect the signal found in the surface and buried snow compared to the initial climatic signal. We evaluate the different contributions to the surface snow isotopic composition between the precipitation and the exchanges with the atmosphere and the variability of the isotopic signal found in profiles from snow pits.
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016, https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Short summary
The relationship between water isotope ratios and temperature is investigated in precipitation snow at Vostok and Dome C, as well as in surface snow along traverses. The temporal slope of the linear regression for the precipitation is smaller than the geographical slope. Thus, using the latter could lead to an underestimation of past temperature changes. The processes active at remote sites (best glacial analogs) are explored through a combination of water isotopes in short snow pits.
Lucie Bazin, Amaelle Landais, Emilie Capron, Valérie Masson-Delmotte, Catherine Ritz, Ghislain Picard, Jean Jouzel, Marie Dumont, Markus Leuenberger, and Frédéric Prié
Clim. Past, 12, 729–748, https://doi.org/10.5194/cp-12-729-2016, https://doi.org/10.5194/cp-12-729-2016, 2016
Short summary
Short summary
We present new measurements of δO2⁄N2 and δ18Oatm performed on well-conserved ice from EDC covering MIS5 and between 380 and 800 ka. The combination of the observation of a 100 ka periodicity in the new δO2⁄N2 record with a MIS5 multi-site multi-proxy study has revealed a potential influence of local climatic parameters on δO2⁄N2. Moreover, we propose that the varying delay between d18Oatm and precession for the last 800 ka is affected by the occurrence of ice sheet discharge events.
M. Ayache, J.-C. Dutay, P. Jean-Baptiste, and E. Fourré
Ocean Sci., 11, 965–978, https://doi.org/10.5194/os-11-965-2015, https://doi.org/10.5194/os-11-965-2015, 2015
Short summary
Short summary
Helium isotopes are a powerful tool in Earth sciences. We present the first simulation of the terrigenic helium isotope distribution in the whole Mediterranean Sea, using a high-resolution model (NEMO-MED12). In addition to providing constraints on helium isotope degassing fluxes in the Mediterranean, our simulations provide information on the ventilation of the deep Mediterranean waters, which are useful for assessing NEMO-MED12 performance.
C. Reutenauer, A. Landais, T. Blunier, C. Bréant, M. Kageyama, M.-N. Woillez, C. Risi, V. Mariotti, and P. Braconnot
Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, https://doi.org/10.5194/cp-11-1527-2015, 2015
Short summary
Short summary
Isotopes of atmospheric O2 undergo millennial-scale variations during the last glacial period, and systematically increase during Heinrich stadials.
Such variations are mostly due to vegetation and water cycle processes.
Our modeling approach reproduces the main observed features of Heinrich stadials in terms of climate, vegetation and rainfall.
It highlights the strong role of hydrology on O2 isotopes, which can be seen as a global integrator of precipitation changes over vegetated areas.
J.-L. Tison, M. de Angelis, G. Littot, E. Wolff, H. Fischer, M. Hansson, M. Bigler, R. Udisti, A. Wegner, J. Jouzel, B. Stenni, S. Johnsen, V. Masson-Delmotte, A. Landais, V. Lipenkov, L. Loulergue, J.-M. Barnola, J.-R. Petit, B. Delmonte, G. Dreyfus, D. Dahl-Jensen, G. Durand, B. Bereiter, A. Schilt, R. Spahni, K. Pol, R. Lorrain, R. Souchez, and D. Samyn
The Cryosphere, 9, 1633–1648, https://doi.org/10.5194/tc-9-1633-2015, https://doi.org/10.5194/tc-9-1633-2015, 2015
Short summary
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
B. Lemieux-Dudon, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, M. Guillevic, P. Kindler, F. Parrenin, and P. Martinerie
Clim. Past, 11, 959–978, https://doi.org/10.5194/cp-11-959-2015, https://doi.org/10.5194/cp-11-959-2015, 2015
F. Parrenin, L. Bazin, E. Capron, A. Landais, B. Lemieux-Dudon, and V. Masson-Delmotte
Geosci. Model Dev., 8, 1473–1492, https://doi.org/10.5194/gmd-8-1473-2015, https://doi.org/10.5194/gmd-8-1473-2015, 2015
Short summary
Short summary
This manuscript describes a probabilistic model which aims at optimizing the chronology of ice cores by combining different sources of information.
A. Cauquoin, A. Landais, G. M. Raisbeck, J. Jouzel, L. Bazin, M. Kageyama, J.-Y. Peterschmitt, M. Werner, E. Bard, and ASTER Team
Clim. Past, 11, 355–367, https://doi.org/10.5194/cp-11-355-2015, https://doi.org/10.5194/cp-11-355-2015, 2015
Short summary
Short summary
We present a new 10Be record at EDC between 269 and 355ka. Our 10Be-based accumulation rate is in good agreement with the one associated with the EDC3 timescale except for the warm MIS 9.3 optimum. This suggests that temperature reconstruction from water isotopes may be underestimated by 2.4K for the difference between the MIS 9.3 and present day. The CMIP5-PMIP3 models do not quantitatively reproduce changes in precipitation vs. temperature increase during glacial–interglacial transitions.
H. C. Steen-Larsen, V. Masson-Delmotte, M. Hirabayashi, R. Winkler, K. Satow, F. Prié, N. Bayou, E. Brun, K. M. Cuffey, D. Dahl-Jensen, M. Dumont, M. Guillevic, S. Kipfstuhl, A. Landais, T. Popp, C. Risi, K. Steffen, B. Stenni, and A. E. Sveinbjörnsdottír
Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, https://doi.org/10.5194/cp-10-377-2014, 2014
D. Veres, L. Bazin, A. Landais, H. Toyé Mahamadou Kele, B. Lemieux-Dudon, F. Parrenin, P. Martinerie, E. Blayo, T. Blunier, E. Capron, J. Chappellaz, S. O. Rasmussen, M. Severi, A. Svensson, B. Vinther, and E. W. Wolff
Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, https://doi.org/10.5194/cp-9-1733-2013, 2013
E. Capron, A. Landais, D. Buiron, A. Cauquoin, J. Chappellaz, M. Debret, J. Jouzel, M. Leuenberger, P. Martinerie, V. Masson-Delmotte, R. Mulvaney, F. Parrenin, and F. Prié
Clim. Past, 9, 983–999, https://doi.org/10.5194/cp-9-983-2013, https://doi.org/10.5194/cp-9-983-2013, 2013
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Infrasound measurement system for real-time in situ tornado measurements
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
On the quality of RS41 radiosonde descent data
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Use of thermal signal for the investigation of near-surface turbulence
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Ground mobile observation system for measuring multisurface microwave emissivity
A differential emissivity imaging technique for measuring hydrometeor mass and type
Effect of snow-covered ground albedo on the accuracy of air temperature measurements
Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Identification of platform exhaust on the RV Investigator
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems
New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns
Is it feasible to estimate radiosonde biases from interlaced measurements?
Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions
Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities
Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications
Overview of and first observations from the TILDAE High-Altitude Balloon Mission
High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea
Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments
Identification of tower-wake distortions using sonic anemometer and lidar measurements
A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance
Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign
Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon
Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation
Characterisation and improvement of j(O1D) filter radiometers
Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign
Return glider radiosonde for in situ upper-air research measurements
The Pilatus unmanned aircraft system for lower atmospheric research
Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications
The Austrian radiation monitoring network ARAD – best practice and added value
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
On the consistency of 2-D video disdrometers in measuring microphysical parameters of solid precipitation
Calibration of 3-D wind measurements on a single-engine research aircraft
Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods
Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign
Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS
Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor
An inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA)
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022, https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021, https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Short summary
Monte Carlo simulations are used to establish baseline precipitation measurement uncertainties according to World Meteorological Organization standards. Measurement accuracy depends on instrument sampling area, time interval, and precipitation rate. Simulations are compared with field measurements taken by an emerging hotplate precipitation sensor. We find that the current collection area is sufficient for light rain, but a larger collection area is required to detect moderate to heavy rain.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021, https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021, https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Olivier F. C. den Ouden, Jelle D. Assink, Cornelis D. Oudshoorn, Dominique Filippi, and Läslo G. Evers
Atmos. Meas. Tech., 14, 3301–3317, https://doi.org/10.5194/amt-14-3301-2021, https://doi.org/10.5194/amt-14-3301-2021, 2021
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
Short summary
Snow measurements are very sensitive to wind. Here, we compare airflow and snowfall simulations to Arctic observations for a Multi-Angle Snowflake Camera to show that measurements of fall speed, orientation, and size are accurate only with a double wind fence and winds below 5 m s−1. In this case, snowflakes tend to fall with a nearly horizontal orientation; the largest flakes are as much as 5 times more likely to be observed. Adjustments are needed for snow falling in naturally turbulent air.
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020, https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Short summary
We have developed a small, light-weight (radiosonde of 20 g with battery), low-cost, and easy-to-use upper-air radiosonde system: the Storm Tracker. With the ability to receive multiple radiosondes simultaneously, the system enables high temporal and spatial resolution atmospheric observations. In the 2018 field campaign, the accuracy of the Storm tracker was tested using co-launched data with Vaisala RS41-SGP radiosondes, and the measurements show an overall good agreement.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary
Short summary
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020, https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Short summary
Directly measured shape and fall speed are two important parameters needed for models and remote sensing. This can be done by the new Dual Ice Crystal Imager (D-ICI) instrument, which takes two high-resolution pictures of falling snow crystals from two different angles. Fall speed is measured by doubly exposing the side-view picture. Size and shape are determined from the second picture providing the top view of the snow crystal. D-ICI has been tested on the ground in Kiruna, northern Sweden.
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018, https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
Brian R. Greene, Antonio R. Segales, Sean Waugh, Simon Duthoit, and Phillip B. Chilson
Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, https://doi.org/10.5194/amt-11-5519-2018, 2018
Short summary
Short summary
With the recent commercial availability of rotary-wing unmanned aircraft systems (rwUAS), their ability to collect observations in the lower atmosphere is quickly being realized. However, integrating sensors with an rwUAS can introduce errors if not sited properly. This study discusses an objective method of determining some of these error sources in temperature, including improper airflow and rotary motor heating. Errors can be mitigated by mounting thermistors under propellers near the tips.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Radiance Calmer, Gregory C. Roberts, Jana Preissler, Kevin J. Sanchez, Solène Derrien, and Colin O'Dowd
Atmos. Meas. Tech., 11, 2583–2599, https://doi.org/10.5194/amt-11-2583-2018, https://doi.org/10.5194/amt-11-2583-2018, 2018
Short summary
Short summary
Remotely piloted aircraft systems (RPAS), commonly called UAVs, are used in atmospheric science for in situ measurements. The presented work shows wind measurements from a five-hole probe on an RPAS. Comparisons with other instruments (sonic anemometer and cloud radar) show good agreement, validating the RPAS measurements. In situ vertical wind measurements at cloud base are highlighted because they are a major parameter needed for simulating aerosol–cloud interactions, though rarely collected.
Birger Bohn and Insa Lohse
Atmos. Meas. Tech., 10, 3151–3174, https://doi.org/10.5194/amt-10-3151-2017, https://doi.org/10.5194/amt-10-3151-2017, 2017
Short summary
Short summary
CCD spectroradiometers are widely used for measurements of atmospheric photolysis frequencies. Their fast response makes them suitable for airborne applications despite the well-known stray-light problem. In this work we describe simple and reliable procedures to minimize the stray-light influence on calibrations and field measurements. Comparisons with a reference instrument confirm high accuracies and low detection limits of important photolysis frequencies.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
Bennett A. Maruca, Raffaele Marino, David Sundkvist, Niharika H. Godbole, Stephane Constantin, Vincenzo Carbone, and Herb Zimmerman
Atmos. Meas. Tech., 10, 1595–1607, https://doi.org/10.5194/amt-10-1595-2017, https://doi.org/10.5194/amt-10-1595-2017, 2017
Short summary
Short summary
The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to characterize small-scale fluctuations in the troposphere and stratosphere. The mission's key instrument, a customized sonic anemometer, made high-speed calibrated measurements of the 3-D wind velocity and air temperature. TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January 2016 from McMurdo Station, Antarctica.
Moon-Soo Park, Sung-Hwa Park, Jung-Hoon Chae, Min-Hyeok Choi, Yunyoung Song, Minsoo Kang, and Joon-Woo Roh
Atmos. Meas. Tech., 10, 1575–1594, https://doi.org/10.5194/amt-10-1575-2017, https://doi.org/10.5194/amt-10-1575-2017, 2017
Short summary
Short summary
The philosophy, background, and details of high-resolution urban observation network to meet the need of reducing damages caused by extreme weather phenomena such as heavy rain/snow fall, strong wind, heat/cold waves, or road ice in the Seoul Metropolitan Area (SMA), Korea (UMS-Seoul), is introduced. Two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deepl and provide useful meteorological information in the SMA.
Sandro M. Oswald, Helga Pietsch, Dietmar J. Baumgartner, Philipp Weihs, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1169–1179, https://doi.org/10.5194/amt-10-1169-2017, https://doi.org/10.5194/amt-10-1169-2017, 2017
Short summary
Short summary
This study investigates effects of precipitation events on the accuracy of solar radiation measurements. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments and two field campaigns were performed. The results indicate that precipitation significantly affects the thermal environment of the instruments and thus their stability. A high accuracy of solar radiation measurements is important to improve the prediction of Earth's climate change.
Katherine McCaffrey, Paul T. Quelet, Aditya Choukulkar, James M. Wilczak, Daniel E. Wolfe, Steven P. Oncley, W. Alan Brewer, Mithu Debnath, Ryan Ashton, G. Valerio Iungo, and Julie K. Lundquist
Atmos. Meas. Tech., 10, 393–407, https://doi.org/10.5194/amt-10-393-2017, https://doi.org/10.5194/amt-10-393-2017, 2017
Short summary
Short summary
During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign, the wake and flow distortion from a 300-meter meteorological tower was identified using pairs of sonic anemometers mounted on opposite sides of the tower, as well as profiling and scanning lidars. Wind speed deficits up to 50% and TKE increases of 2 orders of magnitude were observed at wind directions in the wake, along with wind direction differences (flow deflection) outside of the wake.
John M. Frank, William J. Massman, and Brent E. Ewers
Atmos. Meas. Tech., 9, 5933–5953, https://doi.org/10.5194/amt-9-5933-2016, https://doi.org/10.5194/amt-9-5933-2016, 2016
Short summary
Short summary
Ecosystem flux networks measure carbon dioxide and water vapor exchange and are integral to global studies of the biosphere and climate change. Yet recent evidence suggests a measurement error in sonic anemometry, the principal instrument for eddy-covariance research. A novel Bayesian analysis estimates the three-dimensional correction in these instruments and demonstrates that 60 % of the sites within the AmeriFlux network and numerous others globally underestimate all ecosystem fluxes by 8–12 %.
Line Båserud, Joachim Reuder, Marius O. Jonassen, Stephan T. Kral, Mostafa B. Paskyabi, and Marie Lothon
Atmos. Meas. Tech., 9, 4901–4913, https://doi.org/10.5194/amt-9-4901-2016, https://doi.org/10.5194/amt-9-4901-2016, 2016
Short summary
Short summary
The micro-RPAS SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg.
Guylaine Canut, Fleur Couvreux, Marie Lothon, Dominique Legain, Bruno Piguet, Astrid Lampert, William Maurel, and Eric Moulin
Atmos. Meas. Tech., 9, 4375–4386, https://doi.org/10.5194/amt-9-4375-2016, https://doi.org/10.5194/amt-9-4375-2016, 2016
Short summary
Short summary
Turbulent processes of the atmospheric boundary layer contribute the most to transfers between the surface and the atmosphere. Typically, turbulent boundary layer parameters are measured by sonic anemometers on masts and by research aircraft. This is to measure in situ turbulent parameters in the planetary boundary layer (PBL) at altitudes above 50 m. For this purpose, our team have developed a system under a tethered balloon which has been in use since 2010.
Siebren de Haan
Atmos. Meas. Tech., 9, 4141–4150, https://doi.org/10.5194/amt-9-4141-2016, https://doi.org/10.5194/amt-9-4141-2016, 2016
Short summary
Short summary
The paper presents estimates of aircraft-derived wind observations obtained using Mode-S EHS method by applying the triple-collocation technique. Triple-collocated data sets were constructed using sodar (at Schiphol airport) and Doppler radar wind observation (from two radars in the Netherlands) in combination with numerical weather model data. It was found that the wind error near the surface is around 1.4 m s−1, while at 500 hPa the error is estimated to be around 1.1 m s−1.
Birger Bohn, Dwayne E. Heard, Nikolaos Mihalopoulos, Christian Plass-Dülmer, Rainer Schmitt, and Lisa K. Whalley
Atmos. Meas. Tech., 9, 3455–3466, https://doi.org/10.5194/amt-9-3455-2016, https://doi.org/10.5194/amt-9-3455-2016, 2016
Short summary
Short summary
Filter radiometers are instruments that quantify the rate of formation of excited oxygen atoms from photolysis of ozone in the atmosphere. The excited oxygen atoms are important for the atmospheric self-cleaning ability. The radiometers were characterised by measurements of their spectral response. Together with field comparisons with a reference instrument, the characterisations improved the performance. That will help to better understand atmospheric photochemistry in future research.
Joachim Reuder, Line Båserud, Marius O. Jonassen, Stephan T. Kral, and Martin Müller
Atmos. Meas. Tech., 9, 2675–2688, https://doi.org/10.5194/amt-9-2675-2016, https://doi.org/10.5194/amt-9-2675-2016, 2016
Short summary
Short summary
Extensive operations of the Small Unmanned Meteorological Observer, a small (80 cm) and lightweight (700 g) unmanned research aircraft, have been performed during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) campaign in southern France in summer 2011. With a total of 300 flights, the SUMO system has provided a unique data set consisting of temperature, humidity and wind profiles, surface-temperature surveys and profiles of turbulence parameters.
Andreas Kräuchi and Rolf Philipona
Atmos. Meas. Tech., 9, 2535–2544, https://doi.org/10.5194/amt-9-2535-2016, https://doi.org/10.5194/amt-9-2535-2016, 2016
Short summary
Short summary
New radiosonde instruments for humidity-, radiation- and gas-profile measurements were introduced in recent years for atmospheric research and climate monitoring. Such instruments are intended to be reused on multiple flights. Here we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons to a preset altitude, and a built-in autopilot flies the glider autonomously back to the launch site.
Gijs de Boer, Scott Palo, Brian Argrow, Gabriel LoDolce, James Mack, Ru-Shan Gao, Hagen Telg, Cameron Trussel, Joshua Fromm, Charles N. Long, Geoff Bland, James Maslanik, Beat Schmid, and Terry Hock
Atmos. Meas. Tech., 9, 1845–1857, https://doi.org/10.5194/amt-9-1845-2016, https://doi.org/10.5194/amt-9-1845-2016, 2016
Short summary
Short summary
This paper provides an overview of a recently developed unmanned aerial system (UAS) for study of the lower atmosphere. This platform, the University of Colorado Pilatus UAS, is capable of providing measurements of atmospheric thermodynamics (temperature, pressure, humidity), atmospheric aerosol size distributions, and broadband radiation. These quantities are critical for understanding a variety of atmospheric processes relevant for characterization of the surface energy budget.
Cheng-Ku Yu, Pei-Rong Hsieh, Sandra E. Yuter, Lin-Wen Cheng, Chia-Lun Tsai, Che-Yu Lin, and Ying Chen
Atmos. Meas. Tech., 9, 1755–1766, https://doi.org/10.5194/amt-9-1755-2016, https://doi.org/10.5194/amt-9-1755-2016, 2016
Short summary
Short summary
How to accurately measure droplet fall speed in natural outdoor conditions has been a long-standing and highly challenging issue in the meteorological community. Results from this article are not only to demonstrate the great potential for high-speed imaging to provide a reliable measurement of droplet fall speed without suffering from sampling uncertainties but also to share a new approach and different thoughts about the retrieval of the droplet fall speed information.
Marc Olefs, Dietmar J. Baumgartner, Friedrich Obleitner, Christoph Bichler, Ulrich Foelsche, Helga Pietsch, Harald E. Rieder, Philipp Weihs, Florian Geyer, Thomas Haiden, and Wolfgang Schöner
Atmos. Meas. Tech., 9, 1513–1531, https://doi.org/10.5194/amt-9-1513-2016, https://doi.org/10.5194/amt-9-1513-2016, 2016
Short summary
Short summary
We present the Austrian RADiation monitoring network (ARAD) that has been established to advance national climate monitoring and to support satellite retrieval, atmospheric modeling and solar energy techniques' development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods and strategies.
Andreas Kräuchi, Rolf Philipona, Gonzague Romanens, Dale F. Hurst, Emrys G. Hall, and Allen F. Jordan
Atmos. Meas. Tech., 9, 929–938, https://doi.org/10.5194/amt-9-929-2016, https://doi.org/10.5194/amt-9-929-2016, 2016
Short summary
Short summary
In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them. The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We present two different methods and show advantages and disadvantages.
F. Bernauer, K. Hürkamp, W. Rühm, and J. Tschiersch
Atmos. Meas. Tech., 8, 3251–3261, https://doi.org/10.5194/amt-8-3251-2015, https://doi.org/10.5194/amt-8-3251-2015, 2015
Short summary
Short summary
This work has the aim of clarifying the consistency of 2-D video disdrometer devices in deriving size, velocity and shape parameters of solid hydrometeors. The need of implementing a matching algorithm suitable for mixed- and solid-phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped Styrofoam particles are conducted.
C. Mallaun, A. Giez, and R. Baumann
Atmos. Meas. Tech., 8, 3177–3196, https://doi.org/10.5194/amt-8-3177-2015, https://doi.org/10.5194/amt-8-3177-2015, 2015
Short summary
Short summary
We demonstrate a calibration method for the three-dimensional wind measurements on a research aircraft, which are strongly influenced by dynamical effects during flight. We correct these errors step by step after an extensive test flight program including new methods to gain optimum correction coefficients and a direct estimation of the residual errors. The overall error, estimated with a novel error propagation scheme, is 0.3 m/s for the horizontal and 0.2 m/s for the vertical wind.
R. D. Leeper and J. Kochendorfer
Atmos. Meas. Tech., 8, 2291–2300, https://doi.org/10.5194/amt-8-2291-2015, https://doi.org/10.5194/amt-8-2291-2015, 2015
Short summary
Short summary
Evaporation from precipitation gauges can bias measurements lower. The use of evaporation suppressants may not always be practical, considering the added cost of maintenance, transport, and disposal of the gauge additive. In this field study, two quality assurance methods used to evaluate depth change for the US Climate Reference Network were compared. Results from this study indicate calculation techniques can reduce the impact of gauge evaporation on precipitation measurements.
J. M. Intrieri, G. de Boer, M. D. Shupe, J. R. Spackman, J. Wang, P. J. Neiman, G. A. Wick, T. F. Hock, and R. E. Hood
Atmos. Meas. Tech., 7, 3917–3926, https://doi.org/10.5194/amt-7-3917-2014, https://doi.org/10.5194/amt-7-3917-2014, 2014
Short summary
Short summary
In winter 2011, the Global Hawk unmanned aircraft system (UAS) was deployed over the Arctic to evaluate a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind speed and direction information between the stratosphere and surface. During the 25-hour polar flight, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude.
B. Buchholz, A. Afchine, and V. Ebert
Atmos. Meas. Tech., 7, 3653–3666, https://doi.org/10.5194/amt-7-3653-2014, https://doi.org/10.5194/amt-7-3653-2014, 2014
W. A. Cooper, S. M. Spuler, M. Spowart, D. H. Lenschow, and R. B. Friesen
Atmos. Meas. Tech., 7, 3215–3231, https://doi.org/10.5194/amt-7-3215-2014, https://doi.org/10.5194/amt-7-3215-2014, 2014
N. Wildmann, F. Kaufmann, and J. Bange
Atmos. Meas. Tech., 7, 3059–3069, https://doi.org/10.5194/amt-7-3059-2014, https://doi.org/10.5194/amt-7-3059-2014, 2014
Cited articles
Aemisegger, F., Sturm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study, Atmos. Meas. Tech., 5, 1491–1511, https://doi.org/10.5194/amt-5-1491-2012, 2012.
Bailey, H. L., Kaufman, D. S., Henderson, A. C. G., and Leng, M. J.: Synoptic
scale controls on the δ18O in precipitation across Beringia,
Geophys. Res. Lett., 42), 4608–4616, https://doi.org/10.1002/2015GL063983, 2015.
Bastrikov, V., Steen-Larsen, H. C., Masson-Delmotte, V., Gribanov, K., Cattani, O., Jouzel, J., and Zakharov, V.: Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka), Atmos. Meas. Tech., 7, 1763–1776, https://doi.org/10.5194/amt-7-1763-2014, 2014.
Bonne, J.-L., Masson-Delmotte, V., Cattani, O., Delmotte, M., Risi, C., Sodemann, H., and Steen-Larsen, H. C.: The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland, Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, 2014.
Bréant, C., Leroy-Dos Santos, C., Agosta, C., Casado, M., Fourré,
E., Goursaud, S., Masson-Delmotte, V., Favier, V., Cattani, O., Prié,
F., Golly, B., Orsi, A., Martinerie, P., and Landais, A.: Coastal water vapor
isotopic composition driven by katabatic wind variability in summer at
Dumont d'Urville, coastal East Antarctica, Earth Planet. Sc. Lett., 514,
37–47, https://doi.org/10.1016/j.epsl.2019.03.004, 2019.
Casado, M.: Water stable isotopic composition on the East Antarctic Plateau: measurements at low temperature of the vapour composition, use as an atmospheric tracer and implication for paleoclimate studies (Doctoral dissertation, Université Paris Saclay; Université Versailles Saint-Quentin-En-Yvelines (UVSQ), 2016.
Casado, M., Landais, A., Masson-Delmotte, V., Genthon, C., Kerstel, E., Kassi, S., Arnaud, L., Picard, G., Prie, F., Cattani, O., Steen-Larsen, H.-C., Vignon, E., and Cermak, P.: Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau, Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, 2016.
Casado, M., Landais, A., Picard, G., Münch, T., Laepple, T., Stenni, B., Dreossi, G., Ekaykin, A., Arnaud, L., Genthon, C., Touzeau, A., Masson-Delmotte, V., and Jouzel, J.: Archival processes of the water stable isotope signal in East Antarctic ice cores, The Cryosphere, 12, 1745–1766, https://doi.org/10.5194/tc-12-1745-2018, 2018.
Dong, F. and Baer, D.: Development and Deployment of a Portable Water Isotope
Analyzer for Accurate, Continuous and High-Frequency Oxygen and Hydrogen
Isotope Measurements in Water Vapor and Liquid Water, in: Geophysical
Research Abstracts, 12, EGU2010-5571, 2010.
Ellehoj, M. D., Steen-Larsen, H. C., Johnsen, S. J. and Madsen, M. B.:
Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes:
Experimental investigations and implications for stable water isotope
studies, Rapid Commun. Mass Sp., 27, 2149–2158,
https://doi.org/10.1002/rcm.6668, 2013.
Genthon, C., Piard, L., Vignon, E., Madeleine, J.-B., Casado, M., and Gallée, H.: Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau, Atmos. Chem. Phys., 17, 691–704, https://doi.org/10.5194/acp-17-691-2017, 2017.
Gkinis, V., Popp, T. J., Johnsen, S. J., and Blunier, T.: A continuous stream
flash evaporator for the calibration of an IR cavity ring-down spectrometer
for the isotopic analysis of water, Isotopes Environ. Health Stud., 46,
463–475, https://doi.org/10.1080/10256016.2010.538052, 2010.
Guilpart, E., Vimeux, F., Evan, S., Brioude, J., Metzger, J., Barthe, C.,
Risi, C., and Cattani, O.: The isotopic composition of near-surface water
vapor at the Maïdo observatory (Reunion Island, southwestern Indian
Ocean) documents the controls of the humidity of the subtropical
troposphere, J. Geophys. Res.-Atmos., 122, 9628–9650,
https://doi.org/10.1002/2017JD026791, 2017.
Iannone, R., Romanini, D., Kassi, S., Meijer, H. A. J., and Kerstel, E.: A
Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio
Spectrometer, J. Atmos. Ocean. Tech., 26, 1275–1288, https://doi.org/10.1175/2008JTECHA1218.1,
2009.
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S.,
Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J.,
Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L.,
Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, a,
Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen,
J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E.
W.: Orbital and millennial Antarctic climate variability over the past
800,000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038,
2007.
Jossoud, O. and Leroy Dos Santos, C.: Source code for Humidity Generator's control software, available at: https://zenodo.org/record/4003465#.YGv_JT8682x (last access: 6 April 2021), 2020.
Kerstel, E.: Modeling the dynamic behavior of a droplet evaporation device for the delivery of isotopically calibrated low-humidity water vapor, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-428, in review, 2020.
Kopec, B., Lauder, A., Posmentier, E., and Feng, X.: The diel cycle of water
vapor in west Greenland, J. Geophys. Res.-Atmos., 119, 9386–9399, 2014.
Landsberg, J.: Développement d'un spectromètre laser OF-CEAS pour
les mesures des isotopes de la vapeur d'eau aux concentrations de l'eau
basses, available at: https://tel.archives-ouvertes.fr/tel-01369376,
2014.
Landsberg, J., Romanini, D., and Kerstel, E.: Very high finesse
optical-feedback cavity-enhanced absorption spectrometer for low
concentration water vapor isotope analyses, Opt. Lett., 39, 1795–1798,
https://doi.org/10.1364/OL.39.001795, 2014.
Lee, X., Sargent, S., Smith, R., and Tanner, B.: In Situ Measurement of the
Water Vapor 18O/16O Isotope Ratio for Atmospheric and Ecological
Applications, J. Atmos. Ocean. Tech., 22, 555–565,
https://doi.org/10.1175/JTECH1719.1, 2005.
Leroy-Dos Santos, C., Masson-Delmotte, V., Casado, M., Fourré, E.,
Steen-Larsen, H.-C., Maturilli, M., Orsi, A., Berchet, A., Cattani, O.,
Minster, B., Gherardi, J., and Landais, A., A 4.5 year-long record of
Svalbard water vapor isotopic composition documents winter air mass origin,
J. Geophys. Res., 125, 23, https://doi.org/10.1029/2020JD032681), 2020.
Ritter, F., Steen-larsen, H. C., Werner, M., Masson-Delmotte, V., Orsi, A.,
Behrens, M., Birnbaum, G., Freitag, J., Risi, C., and Kipfstuhl, S.: Isotopic
exchange on the diurnal scale between near-surface snow and lower
atmospheric water vapor at Kohnen station, East Antarctica, J. Geophys.
Res., 10, 1–35, https://doi.org/10.5194/tc-2016-4, 2016.
Sayres, D. S., Moyer, E. J., Hanisco, T. F., St. Clair, T. M., Keutsch, F. N., O'Brien, A., Allen, N. T., Lapson, Demusz, J. N., Rivero, M., Martin, T., Greenberg, M., Tuozzolo, C., Engel, G. S., Kroll, J. H., Paul, J. B., and Anderson, J. G.: A New Cavity Based Absorption Instrument for
Detection of Water Isotopologues in the Upper Troposphere and Lower
Stratosphere, Rev. Sci. Inst., 80, 44102–44114, 2009.
Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T. and
Seibt, U.: Concentration effects on laser-based δ18O and
δ2H measurements and implications for the calibration of vapour
measurements with liquid standards, Rapid Commun. Mass Sp., 24,
3553–3561, https://doi.org/10.1002/rcm.4813, 2010.
Sodemann, H., Aemisegger, F., Pfahl, S., Bitter, M., Corsmeier, U., Feuerle, T., Graf, P., Hankers, R., Hsiao, G., Schulz, H., Wieser, A., and Wernli, H.: The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights, Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, 2017.
Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, S., Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., and Sveinbjörnsdottír, A. E.: What controls the isotopic composition of Greenland surface snow?, Clim. Past, 10, 377–392, https://doi.org/10.5194/cp-10-377-2014, 2014.
Sturm, P. and Knohl, A.: Water vapor δ2H and δ18O measurements using off-axis integrated cavity output spectroscopy, Atmos. Meas. Tech., 3, 67–77, https://doi.org/10.5194/amt-3-67-2010, 2010.
Tremoy, G., Vimeux, F., Cattani, O., Mayaki, S., Souley, I., and Favreau, G.:
Measurements of water vapor isotope ratios with wavelength-scanned cavity
ring-down spectroscopy technology: new insights and important caveats for
deuterium excess measurements in tropical areas in comparison with
isotope-ratio mass spectrometry, Rapid Commun. Mass Sp., 25,
3469–3480, https://doi.org/10.1002/rcm.5252, 2011.
Wang, L., Caylor, K., and Dragoni, D.: On the calibration of continuous,
high-precision δ18O and δ2H measurements using an
off-axis integrated cavity output spectrometer, Rapid Commun. Mass Sp., 23, 530–536, https://doi.org/10.1002/rcm.3905, 2009.
Weng, Y., Touzeau, A., and Sodemann, H.: Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers, Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, 2020.
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
We developed an instrument that can generate water vapor at low humidity at a very stable level....