Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-391-2021
https://doi.org/10.5194/amt-14-391-2021
Research article
 | 
18 Jan 2021
Research article |  | 18 Jan 2021

Classification of lidar measurements using supervised and unsupervised machine learning methods

Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley

Related authors

Retrieval of bulk hygroscopicity from PurpleAir PM2.5 sensor measurements
Jillian Psotka, Emily Tracey, and Robert J. Sica
Atmos. Meas. Tech., 18, 3135–3146, https://doi.org/10.5194/amt-18-3135-2025,https://doi.org/10.5194/amt-18-3135-2025, 2025
Short summary
Solar background radiation temperature calibration of a pure rotational Raman lidar
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 18, 1461–1469, https://doi.org/10.5194/amt-18-1461-2025,https://doi.org/10.5194/amt-18-1461-2025, 2025
Short summary

Cited articles

Bishop, C. M.: Pattern recognition and machine learning, Springer-Verlag, New York, 2006. a, b, c
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2002. a
Burges, C. J.: A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery, 2, 121–167, 1998. a
Christian, K., Wang, J., Ge, C., Peterson, D., Hyer, E., Yorks, J., and McGill, M.: Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10061–10071, 2019. a
Doucet, P. J.: First aerosol measurements with the Purple Crow Lidar: lofted particulate matter straddling the stratospheric boundary, Master's thesis, The University of Western Ontario, London, ON, Canada, 2009. a, b
Download
Short summary
While it is relatively straightforward to automate the processing of lidar signals, it is difficult to automatically preprocess the measurements to distinguish between good and bad scans. It is easy to train humans to perform the task; however, considering the growing number of measurements, it is a time-consuming, on-going process. We have tested some machine learning algorithms for lidar signal classification and had success with both supervised and unsupervised methods.
Share