Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-391-2021
https://doi.org/10.5194/amt-14-391-2021
Research article
 | 
18 Jan 2021
Research article |  | 18 Jan 2021

Classification of lidar measurements using supervised and unsupervised machine learning methods

Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley

Related authors

Optimal estimation method retrievals of stratospheric ozone profiles from a DIAL
Ghazal Farhani, Robert J. Sica, Sophie Godin-Beekmann, and Alexander Haefele
Atmos. Meas. Tech., 12, 2097–2111, https://doi.org/10.5194/amt-12-2097-2019,https://doi.org/10.5194/amt-12-2097-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023,https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Difference spectrum fitting of the ion–neutral collision frequency from dual-frequency EISCAT measurements
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023,https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Performance evaluation of three bio-optical models in aerosol and ocean color joint retrievals
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023,https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Observation of horizontal temperature variations by a spatial heterodyne interferometer using single-sided interferograms
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023,https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Version 8 IMK–IAA MIPAS temperatures from 12–15 µm spectra: Middle and Upper Atmosphere modes
Maya García-Comas, Bernd Funke, Manuel López-Puertas, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Belén Martínez-Mondéjar, Gabriele P. Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 16, 5357–5386, https://doi.org/10.5194/amt-16-5357-2023,https://doi.org/10.5194/amt-16-5357-2023, 2023
Short summary

Cited articles

Bishop, C. M.: Pattern recognition and machine learning, Springer-Verlag, New York, 2006. a, b, c
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2002. a
Burges, C. J.: A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery, 2, 121–167, 1998. a
Christian, K., Wang, J., Ge, C., Peterson, D., Hyer, E., Yorks, J., and McGill, M.: Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10061–10071, 2019. a
Doucet, P. J.: First aerosol measurements with the Purple Crow Lidar: lofted particulate matter straddling the stratospheric boundary, Master's thesis, The University of Western Ontario, London, ON, Canada, 2009. a, b
Download
Short summary
While it is relatively straightforward to automate the processing of lidar signals, it is difficult to automatically preprocess the measurements to distinguish between good and bad scans. It is easy to train humans to perform the task; however, considering the growing number of measurements, it is a time-consuming, on-going process. We have tested some machine learning algorithms for lidar signal classification and had success with both supervised and unsupervised methods.