Articles | Volume 14, issue 1
https://doi.org/10.5194/amt-14-391-2021
https://doi.org/10.5194/amt-14-391-2021
Research article
 | 
18 Jan 2021
Research article |  | 18 Jan 2021

Classification of lidar measurements using supervised and unsupervised machine learning methods

Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley

Related authors

Optimal estimation method retrievals of stratospheric ozone profiles from a DIAL
Ghazal Farhani, Robert J. Sica, Sophie Godin-Beekmann, and Alexander Haefele
Atmos. Meas. Tech., 12, 2097–2111, https://doi.org/10.5194/amt-12-2097-2019,https://doi.org/10.5194/amt-12-2097-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Analysis of the measurement uncertainty for a 3D wind lidar
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024,https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024,https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
An improved geolocation methodology for spaceborne radar and lidar systems
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024,https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024,https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary

Cited articles

Bishop, C. M.: Pattern recognition and machine learning, Springer-Verlag, New York, 2006. a, b, c
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2002. a
Burges, C. J.: A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery, 2, 121–167, 1998. a
Christian, K., Wang, J., Ge, C., Peterson, D., Hyer, E., Yorks, J., and McGill, M.: Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10061–10071, 2019. a
Doucet, P. J.: First aerosol measurements with the Purple Crow Lidar: lofted particulate matter straddling the stratospheric boundary, Master's thesis, The University of Western Ontario, London, ON, Canada, 2009. a, b
Download
Short summary
While it is relatively straightforward to automate the processing of lidar signals, it is difficult to automatically preprocess the measurements to distinguish between good and bad scans. It is easy to train humans to perform the task; however, considering the growing number of measurements, it is a time-consuming, on-going process. We have tested some machine learning algorithms for lidar signal classification and had success with both supervised and unsupervised methods.