Foody, G. M. and Mathur, A.: A relative evaluation of multiclass image classification by support vector machines, IEEE T. Geosci. Remote Sens., 42,
1335–1343, 2004. a
Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl,
T., Sica, R., Doucet, P., and Godin-Beekmann, S.: The untold story of pyrocumulonimbus,
B. Am. Meteorol. Soc., 91, 1193–1210, 2010.
a,
b
Hastie, T., Tibshirani, R., and Friedman, J.: Unsupervised learning, in: The elements of statistical learning, Springer Series in Statistics, New York, Chap. 14, 485–585, 2009. a
Hinton, G. E. and Roweis, S. T.: Stochastic neighbor embedding, Advances in neural information processing systems, 15, 857–864, 2002.
a,
b
Knerr, S., Lé, P., and Dreyfus, G.: Single-layer
learning revisited: a stepwise procedure for building and training a neural network, in:
Neurocomputing, Springer, Berlin, Heidelberg, 41–50, 1990.
a,
b,
c
Liaw, A., Wiener, M.,
et al.: Classification and regression by randomForest, R News, 2, 18–22, 2002.
a,
b,
c
NDACC: NDACC Measurements at the London, Ontario, Canada Station, NDACC, available at:
https://www.ndaccdemo.org/stations/london-ontario-canada or via ftp at:
http://ftp.cpc.ncep.noaa.gov/ndacc/station/londonca/hdf/lidar/, last access: 8 January 2021. a
Nicolae, D., Vasilescu, J., Talianu, C., Binietoglou, I., Nicolae, V., Andrei, S., and Antonescu, B.: A neural network aerosol-typing algorithm based on lidar data, Atmos. Chem. Phys., 18, 14511–14537,
https://doi.org/10.5194/acp-18-14511-2018, 2018.
a,
b
Quinlan, J. R.: Induction of decision trees, Machine
Learn., 1, 81–106, 1986. a
Robert, C. P. and Casella, G.: Monte Carlo Statistical
Methods, Springer Texts in Statistics, Springer science & business media, New York, NY, 2004. a
Schapire, R. E.: The strength of weak learnability,
Machine Learn., 5, 197–227, 1990. a
Shannon, C.: A mathematical theory of
communication, Bell Syst. Techn. J., 27, 379–423, 1948. a
Sica, R., Sargoytchev, S., Argall, P. S., Borra, E. F., Girard, L.,
Sparrow, C. T., and Flatt, S.: Lidar measurements taken with a large-aperture liquid
mirror. 1. Rayleigh-scatter system, Appl. Opt., 34, 6925–6936, 1995. a
Vapnik, V.: The nature of statistical learning theory,
Springer Science & Business Media, Springer-Verlag New York, 2013. a
Wing, R., Hauchecorne, A., Keckhut, P., Godin-Beekmann, S., Khaykin, S., McCullough, E. M., Mariscal, J.-F., and d'Almeida, É.: Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars, Atmos. Meas. Tech., 11, 5531–5547,
https://doi.org/10.5194/amt-11-5531-2018, 2018.
a,
b
Zeng, S., Vaughan, M., Liu, Z., Trepte, C., Kar, J., Omar, A., Winker, D., Lucker, P., Hu, Y., Getzewich, B., and Avery, M.: Application of high-dimensional fuzzy
k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination, Atmos. Meas. Tech., 12, 2261–2285,
https://doi.org/10.5194/amt-12-2261-2019, 2019.
a,
b