Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7277-2021
https://doi.org/10.5194/amt-14-7277-2021
Research article
 | 
18 Nov 2021
Research article |  | 18 Nov 2021

Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia

Farhan Mustafa, Lingbing Bu, Qin Wang, Na Yao, Muhammad Shahzaman, Muhammad Bilal, Rana Waqar Aslam, and Rashid Iqbal

Data sets

OCO-2 Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files, Retrospective processing V10r OCO-2 Science Team, Michael Gunson, and Annmarie Eldering https://doi.org/10.5067/E4E140XDMPO2

ODIAC Fossil Fuel Emission Dataset Center for Global Environmental Research (CGER) http://db.cger.nies.go.jp/dataset/ODIAC/

Download
Short summary
A neural-network-based approach was suggested to estimate CO2 emissions using satellite-based net primary productivity (NPP) and XCO2 retrievals. XCO2 anomalies were calculated for each year using OCO-2 retrievals. A Generalized Regression Neural Network (GRNN) model was then built; NPP, XCO2 anomalies, and ODIAC CO2 emissions from 2015 to 2018 were used as a training dataset; and, finally, CO2 emissions were predicted for 2019 based on the NPP and XCO2 anomalies calculated for the same year.