Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7277-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
Farhan Mustafa
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Lingbing Bu
CORRESPONDING AUTHOR
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Qin Wang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Na Yao
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Muhammad Shahzaman
School of Atmospheric Sciences (SAS), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Muhammad Bilal
School of Marine Sciences (SMS), Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
Rana Waqar Aslam
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, China
Rashid Iqbal
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
Related authors
Qin Wang, Farhan Mustafa, Lingbing Bu, Shouzheng Zhu, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 14, 6601–6617, https://doi.org/10.5194/amt-14-6601-2021, https://doi.org/10.5194/amt-14-6601-2021, 2021
Short summary
Short summary
In this work, an airborne experiment was carried out to validate a newly developed CO2 monitoring IPDA lidar against the in situ measurements obtained from a commercial CO2 monitoring instrument installed on an aircraft. The XCO2 values calculated with the IPDA lidar measurements were compared with the dry-air CO2 mole fraction measurements obtained from the in situ instruments, and the results showed a good agreement between the two datasets.
Pingyi Dong, Xingwen Jiang, Xingbing Zhao, Yuanchang Dong, Jiafeng Zheng, Chun Hu, Guolu Gao, Lei Liu, Shulei Li, and Lingbing Bu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2523, https://doi.org/10.5194/egusphere-2025-2523, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A method is developed and validated for retrieving vertical profiles of DSD parameters from a single-frequency Ka-band radar in this study. Some unique characteristics of the vertical profiles of DSD parameters in the eastern Tibetan Plateau are found. The empirical relationships for quantitative precipitation estimates and attenuation correction in the eastern Tibetan Plateau with Ka-band radar are derived.
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
Atmos. Chem. Phys., 25, 6725–6740, https://doi.org/10.5194/acp-25-6725-2025, https://doi.org/10.5194/acp-25-6725-2025, 2025
Short summary
Short summary
This study utilized the IPDA (integrated path differential absorption) lidar on board the DQ-1 satellite to monitor emissions from localized strong point sources and, for the first time, observed the diurnal variation in CO2 emissions from a high-latitude power plant. Overall, power plant CO2 emissions were largely consistent with local electricity consumption patterns, with most plants emitting less at night than during the day and with higher emissions in winter compared to spring and autumn.
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024, https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Short summary
China has launched the atmospheric environment monitoring satellite DQ-1, which consists of an advanced lidar system. Our research presents a retrieval algorithm of the DQ-1 lidar system, and the retrieval results are consistent with other datasets. We also use the DQ-1 dataset to investigate dust and volcanic aerosols. This research shows that the DQ-1 lidar system can accurately measure the Earth's atmosphere and has potential for scientific applications.
Qin Wang, Farhan Mustafa, Lingbing Bu, Shouzheng Zhu, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 14, 6601–6617, https://doi.org/10.5194/amt-14-6601-2021, https://doi.org/10.5194/amt-14-6601-2021, 2021
Short summary
Short summary
In this work, an airborne experiment was carried out to validate a newly developed CO2 monitoring IPDA lidar against the in situ measurements obtained from a commercial CO2 monitoring instrument installed on an aircraft. The XCO2 values calculated with the IPDA lidar measurements were compared with the dry-air CO2 mole fraction measurements obtained from the in situ instruments, and the results showed a good agreement between the two datasets.
Cited articles
Bao, Z., Zhang, X., Yue, T., Zhang, L., Wang, Z., Jiao, Y., Bai, W., and Meng, X.:
Retrieval and Validation of XCO2 from TanSat Target Mode Observations in Beijing,
Remote Sens.-Basel,
12, 3063, https://doi.org/10.3390/rs12183063, 2020.
Bie, N., Lei, L., Zeng, Z., Cai, B., Yang, S., He, Z., Wu, C., and Nassar, R.: Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution, Atmos. Meas. Tech., 11, 1251–1272, https://doi.org/10.5194/amt-11-1251-2018, 2018.
Boden, T. A., Andres, R. J., and Marland, G.:
Global, regional, and national fossil-fuel CO2 emissions (1751–2014) (v. 2017),
Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States),
Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA, 2017.
Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.:
Copernicus Global Land Cover Layers—Collection 2,
Remote Sens.-Basel,
12, 1044, https://doi.org/10.3390/rs12061044, 2020.
Cao, L., Chen, X., Zhang, C., Kurban, A., Yuan, X., Pan, T., and de Maeyer, P.:
The Temporal and Spatial Distributions of the Near-Surface CO2 Concentrations in Central Asia and Analysis of Their Controlling Factors,
Atmosphere,
8, 85, https://doi.org/10.3390/atmos8050085, 2017.
Center for Global Environmental Research (CGER): ODIAC Fossil Fuel Emission Dataset, CGER [data set], available at: http://db.cger.nies.go.jp/dataset/ODIAC/, last access: 3 June 2021.
Chen, Z., Ye, X., and Huang, P.:
Estimating Carbon Dioxide (CO2) Emissions from Reservoirs Using Artificial Neural Networks,
Water,
10, 26, https://doi.org/10.3390/w10010026, 2018.
Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2), SPIE Optical Engineering + Applications, San Diego, California, United States, 8 September 2015, 960702, https://doi.org/10.1117/12.2187291, 2015.
Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D. M., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T. E., Thompson, D. R., Wennberg, P. O., Wunch, D., and Yung, Y. L.: The ACOS CO2 retrieval algorithm – Part II: Global data characterization, Atmos. Meas. Tech., 5, 687–707, https://doi.org/10.5194/amt-5-687-2012, 2012.
Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A. M., Oyafuso, F. A., Frankenberg, C., O'Dell, C. W., Bruegge, C. J., Doran, G. B., Eldering, A., Fisher, B. M., Fu, D., Gunson, M. R., Mandrake, L., Osterman, G. B., Schwandner, F. M., Sun, K., Taylor, T. E., Wennberg, P. O., and Wunch, D.: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59–81, https://doi.org/10.5194/amt-10-59-2017, 2017.
Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019.
EDGAR:
Emission Database for Global Atmospheric Research (EDGAR v4.3.2),
European Commission, 2017.
Fu, P., Xie, Y., Moore, C. E., Myint, S. W., and Bernacchi, C. J.:
A Comparative Analysis of Anthropogenic CO2 Emissions at City Level Using OCO-2 Observations: A Global Perspective,
Earths Future,
7, 1058–1070, https://doi.org/10.1029/2019EF001282, 2019.
Guan, D., Liu, Z., Geng, Y., Lindner, S., and Hubacek, K.:
The gigatonne gap in China's carbon dioxide inventories,
Nat. Clim. Change,
2, 672–675, https://doi.org/10.1038/nclimate1560, 2012.
Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue du Can, S.:
High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States,
Environ. Sci. Technol.,
43, 5535–5541, https://doi.org/10.1021/es900806c, 2009.
Hakkarainen, J., Ialongo, I., and Tamminen, J.:
Direct space-based observations of anthropogenic CO2 emission areas from OCO-2,
Geophys. Res. Lett.,
43, 11400–11406, https://doi.org/10.1002/2016GL070885, 2016.
Hakkarainen, J., Ialongo, I., Maksyutov, S., and Crisp, D.:
Analysis of Four Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2,
Remote Sens.-Basel,
11, 850, https://doi.org/10.3390/rs11070850, 2019.
Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5 ∘C Global Warming on Natural and Human Systems, in: Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., IPCC, in press, 2021.
Hong, X., Zhang, P., Bi, Y., Liu, C., Sun, Y., Wang, W., Chen, Z., Yin, H., Zhang, C., Tian, Y., and Liu, J.:
Retrieval of Global Carbon Dioxide From TanSat Satellite and Comprehensive Validation With TCCON Measurements and Satellite Observations,
IEEE T. Geosci. Remote,
1–16, https://doi.org/10.1109/TGRS.2021.3066623, 2021.
Horowitz, C. A.: Paris Agreement, Int. Leg. Mater., 55, 740–755, https://doi.org/10.1017/S0020782900004253, 2016.
Hutchins, M. G., Colby, J. D., Marland, G., and Marland, E.:
A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States,
Mitig. Adapt. Strat. Gl.,
22, 947–972, https://doi.org/10.1007/s11027-016-9709-9, 2017.
Jalil, S. A.:
Carbon Dioxide Emission in the Middle East and North African (MENA) Region: A Dynamic Panel Data Study,
Journal of Emerging Economies and Islamic Research,
2, 5, https://doi.org/10.24191/jeeir.v2i3.9629, 2014.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Keppel-Aleks, G., Wennberg, P. O., O'Dell, C. W., and Wunch, D.: Towards constraints on fossil fuel emissions from total column carbon dioxide, Atmos. Chem. Phys., 13, 4349–4357, https://doi.org/10.5194/acp-13-4349-2013, 2013.
Kiel, M., O'Dell, C. W., Fisher, B., Eldering, A., Nassar, R., MacDonald, C. G., and Wennberg, P. O.: How bias correction goes wrong: measurement of affected by erroneous surface pressure estimates, Atmos. Meas. Tech., 12, 2241–2259, https://doi.org/10.5194/amt-12-2241-2019, 2019.
Kong, Y., Chen, B., and Measho, S.:
Spatio-temporal consistency evaluation of XCO2 retrievals from GOSAT and OCO-2 based on TCCON and model data for joint utilization in carbon cycle research,
Atmosphere,
10, 1–23, https://doi.org/10.3390/atmos10070354, 2019.
Konovalov, I. B., Berezin, E. V., Ciais, P., Broquet, G., Zhuravlev, R. V., and Janssens-Maenhout, G.: Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species, Atmos. Chem. Phys., 16, 13509–13540, https://doi.org/10.5194/acp-16-13509-2016, 2016.
Korsbakken, J. I., Peters, G. P., and Andrew, R. M.:
Uncertainties around reductions in China's coal use and CO2 emissions,
Nat. Clim. Change,
6, 687–690, https://doi.org/10.1038/nclimate2963, 2016.
Kumar, K. R., Revadekar, J. V., and Tiwari, Y. K.:
AIRS retrieved CO2 and its association with climatic parameters over india during 2004-2011,
Sci. Total Environ.,
476–477, 79–89, https://doi.org/10.1016/j.scitotenv.2013.12.118, 2014.
Lamminpää, O., Hobbs, J., Brynjarsdóttir, J., Laine, M., Braverman, A., Lindqvist, H., and Tamminen, J.:
Accelerated MCMC for Satellite-Based Measurements of Atmospheric CO2,
Remote Sens.-Basel,
11, 2061, https://doi.org/10.3390/rs11172061, 2019.
Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B., Gurney, K. R., Huang, J., O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R., Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., and Wu, K.:
High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX),
J. Geophys. Res.-Atmos.,
121, 5213–5236, https://doi.org/10.1002/2015JD024473, 2016.
Liu, D., Lei, L., Guo, L., and Zeng, Z.-C.:
A Cluster of CO2 Change Characteristics with GOSAT Observations for Viewing the Spatial Pattern of CO2 Emission and Absorption,
Atmosphere,
6, 1695–1713, https://doi.org/10.3390/atmos6111695, 2015.
Liu, Y., Wang, J., Yao, L., Chen, X., Cai, Z., Yang, D., Yin, Z., Gu, S., Tian, L., Lu, N., and Lyu, D.:
The TanSat mission: preliminary global observations,
Sci. Bull.,
63, 1200–1207, https://doi.org/10.1016/j.scib.2018.08.004, 2018.
Maksyutov, S., Takagi, H., Valsala, V. K., Saito, M., Oda, T., Saeki, T., Belikov, D. A., Saito, R., Ito, A., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., and Yokota, T.: Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations, Atmos. Chem. Phys., 13, 9351–9373, https://doi.org/10.5194/acp-13-9351-2013, 2013.
Matsunaga, T., Morino, I., Yoshida, Y., Saito, M., Noda, H., Ohyama, H., Niwa, Y., Yashiro, H., Kamei, A., Kawazoe, F., Saeki, T., Ishihara, Y., Imasu, R., Teruyuki, N., Nakajima, T. S. Y., Saitoh, N., and Hashimoto, M.:
Early Results of GOSAT-2 Level 2 Products,
in: AGU Fall Meeting Abstracts, December 2019, abstract #A52H-02, 2019.
Mustafa, F., Bu, L., Wang, Q., Ali, M. A., Bilal, M., Shahzaman, M., and Qiu, Z.:
Multi-year comparison of CO2 concentration from NOAA carbon tracker reanalysis model with data from GOSAT and OCO-2 over Asia,
Remote Sens.-Basel,
12, 2498, https://doi.org/10.3390/RS12152498, 2020.
Mustafa, F., Bu, L., Wang, Q., Yao, N., Shahzaman, M., Bilal, M., Aslam, R. W., and Iqbal, R.: Neural Network Based Estimation of Regional Scale Anthropogenic CO2 Emissions Using OCO-2 Dataset Over East and West Asia, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-222, in review, 2021a.
Mustafa, F., Wang, H., Bu, L., Wang, Q., Shahzaman, M., Bilal, M., Zhou, M., Iqbal, R., Aslam, R. W., Ali, M. A., and Qiu, Z.:
Validation of GOSAT and OCO-2 against In Situ Aircraft Measurements and Comparison with CarbonTracker and GEOS-Chem over Qinhuangdao, China,
Remote Sens.-Basel,
13, 899, https://doi.org/10.3390/rs13050899, 2021b.
OCO-2 Science Team, Gunson, M., and Eldering, A.: OCO-2 Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E4E140XDMPO2, 2020.
ODell, C., Eldering, A., Gunson, M., Crisp, D., Fisher, B., Kiel, M., Kuai, L., Laughner, J., Merrelli, A., Nelson, R., Osterman, G., Payne, V., Rosenberg, R., Taylor, T., Wennberg, P., Kulawik, S., Lindqvist, H., Miller, S., and Nassar, R.: Improvements in XCO2 accuracy from OCO-2 with the latest ACOS v10 product, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10484, https://doi.org/10.5194/egusphere-egu21-10484, 2021.
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99–121, https://doi.org/10.5194/amt-5-99-2012, 2012.
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., Mandrake, L., Merrelli, A., Natraj, V., Nelson, R. R., Osterman, G. B., Payne, V. H., Taylor, T. E., Wunch, D., Drouin, B. J., Oyafuso, F., Chang, A., McDuffie, J., Smyth, M., Baker, D. F., Basu, S., Chevallier, F., Crowell, S. M. R., Feng, L., Palmer, P. I., Dubey, M., García, O. E., Griffith, D. W. T., Hase, F., Iraci, L. T., Kivi, R., Morino, I., Notholt, J., Ohyama, H., Petri, C., Roehl, C. M., Sha, M. K., Strong, K., Sussmann, R., Te, Y., Uchino, O., and Velazco, V. A.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018.
Oda, T.: ODIAC Fossil Fuel CO2 Emissions Dataset (ODIAC2020, ODIAC2019, ODIAC2018, ODIAC2017, ODIAC2016, ODIAC2015a, ODIAC2013a), National Institute for Environmental Studies, Japan [data set], https://doi.org/10.17595/20170411.001, 2015.
Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, 10, 87–107, https://doi.org/10.5194/essd-10-87-2018, 2018.
Olivier, J. G. J., Van Aardenne, J. A., Dentener, F. J., Pagliari, V., Ganzeveld, L. N., and Peters, J. A. H. W.:
Recent trends in global greenhouse gas emissions:regional trends 1970–2000 and spatial distributionof key sources in 2000,
Environm. Sci.,
2, 81–99, https://doi.org/10.1080/15693430500400345, 2005.
Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., Niwa, Y., Patra, P. K., Peters, W., Rayner, P. J., Rödenbeck, C., van der Laan-Luijkx, I. T., and Zhang, X.: Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions, Biogeosciences, 10, 6699–6720, https://doi.org/10.5194/bg-10-6699-2013, 2013.
Rao, M.: Machine Learning in Estimating CO2 Emissions from Electricity Generation, in: Uncertainty Management in Engineering – Topics in Pollution Prevention and Controls [Working Title], IntechOpen, https://doi.org/10.5772/intechopen.97452, 2021.
Rooki, R.:
Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel–Bulkley drilling fluids in oil drilling,
Measurement,
85, 184–191, https://doi.org/10.1016/j.measurement.2016.02.037, 2016.
Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., and Zhang, Q.: China CO2 emission accounts 1997–2015, Sci. Data, 5, 170201, https://doi.org/10.1038/sdata.2017.201, 2018.
Shekhar, A., Chen, J., Paetzold, J. C., Dietrich, F., Zhao, X., Bhattacharjee, S., Ruisinger, V., and Wofsy, S. C.:
Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data from OCO-2 satellite,
Environ. Res. Lett.,
15, 095010, https://doi.org/10.1088/1748-9326/ab9cfe, 2020.
Specht, D. F.:
A general regression neural network,
IEEE T. Neural Networ.,
2, 568–576, https://doi.org/10.1109/72.97934, 1991.
Takagi, H., Saeki, T., Oda, T., Saito, M., Valsala, V., Belikov, D., Saito, R., Yoshida, Y., Morino, I., Uchino, O., Andres, R. J., Yokota, T., and Maksyutov, S.:
On the Benefit of GOSAT Observations to the Estimation of Regional CO2 Fluxes,
SOLA,
7, 161–164, https://doi.org/10.2151/sola.2011-041, 2011.
Taylor, T. E., Eldering, A., Merrelli, A., Kiel, M., Somkuti, P., Cheng, C., Rosenberg, R., Fisher, B., Crisp, D., Basilio, R., Bennett, M., Cervantes, D., Chang, A., Dang, L., Frankenberg, C., Haemmerle, V. R., Keller, G. R., Kurosu, T., Laughner, J. L., Lee, R., Marchetti, Y., Nelson, R. R., O'Dell, C. W., Osterman, G., Pavlick, R., Roehl, C., Schneider, R., Spiers, G., To, C., Wells, C., Wennberg, P. O., Yelamanchili, A., and Yu, S.:
OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals,
Remote Sen. Environ.,
251, 112032, https://doi.org/10.1016/j.rse.2020.112032, 2020.
Taylor, T. E., O'Dell, C. W., Crisp, D., Kuze, A., Lindqvist, H., Wennberg, P. O., Chatterjee, A., Gunson, M., Eldering, A., Fisher, B., Kiel, M., Nelson, R. R., Merrelli, A., Osterman, G., Chevallier, F., Palmer, P. I., Feng, L., Deutscher, N. M., Dubey, M. K., Feist, D. G., Garcia, O. E., Griffith, D., Hase, F., Iraci, L. T., Kivi, R., Liu, C., De Mazière, M., Morino, I., Notholt, J., Oh, Y.-S., Ohyama, H., Pollard, D. F., Rettinger, M., Roehl, C. M., Schneider, M., Sha, M. K., Shiomi, K., Strong, K., Sussmann, R., Té, Y., Velazco, V. A., Vrekoussis, M., Warneke, T., and Wunch, D.: An eleven year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-247, in review, 2021.
Wang, J. S., Oda, T., Kawa, S. R., Strode, S. A., Baker, D. F., Ott, L. E., and Pawson, S.:
The impacts of fossil fuel emission uncertainties and accounting for 3-D chemical CO2 production on inverse natural carbon flux estimates from satellite and in situ data,
Environ. Res. Lett.,
15, 085002, https://doi.org/10.1088/1748-9326/ab9795, 2020.
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F., Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P., Wang, W. T., Wang, X. L., Liu, W. X., Li, B. G., and Piao, S. L.: High-resolution mapping of combustion processes and implications for CO2 emissions, Atmos. Chem. Phys., 13, 5189–5203, https://doi.org/10.5194/acp-13-5189-2013, 2013.
Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, C. M., O'Dell, C., Mandrake, L., Viatte, C., Kiel, M., Griffith, D. W. T., Deutscher, N. M., Velazco, V. A., Notholt, J., Warneke, T., Petri, C., De Maziere, M., Sha, M. K., Sussmann, R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F., Blumenstock, T., Feist, D. G., Arnold, S. G., Strong, K., Mendonca, J., Kivi, R., Heikkinen, P., Iraci, L., Podolske, J., Hillyard, P. W., Kawakami, S., Dubey, M. K., Parker, H. A., Sepulveda, E., García, O. E., Te, Y., Jeseck, P., Gunson, M. R., Crisp, D., and Eldering, A.: Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) measurements with TCCON, Atmos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-10-2209-2017, 2017.
Yang, D., Liu, Y., Cai, Z., Chen, X., Yao, L., and Lu, D.:
First Global Carbon Dioxide Maps Produced from TanSat Measurements,
Adv. Atmos. Sci.,
35, 621–623, https://doi.org/10.1007/s00376-018-7312-6, 2018.
Yang, S., Lei, L., Zeng, Z., He, Z., and Zhong, H.:
An Assessment of Anthropogenic CO2 Emissions by Satellite-Based Observations in China,
Sensors-Basel,
19, 1118, https://doi.org/10.3390/s19051118, 2019.
Short summary
A neural-network-based approach was suggested to estimate CO2 emissions using satellite-based net primary productivity (NPP) and XCO2 retrievals. XCO2 anomalies were calculated for each year using OCO-2 retrievals. A Generalized Regression Neural Network (GRNN) model was then built; NPP, XCO2 anomalies, and ODIAC CO2 emissions from 2015 to 2018 were used as a training dataset; and, finally, CO2 emissions were predicted for 2019 based on the NPP and XCO2 anomalies calculated for the same year.
A neural-network-based approach was suggested to estimate CO2 emissions using satellite-based...