Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7511-2021
https://doi.org/10.5194/amt-14-7511-2021
Research article
 | 
03 Dec 2021
Research article |  | 03 Dec 2021

Assessing the feasibility of using a neural network to filter Orbiting Carbon Observatory 2 (OCO-2) retrievals at northern high latitudes

Joseph Mendonca, Ray Nassar, Christopher W. O'Dell, Rigel Kivi, Isamu Morino, Justus Notholt, Christof Petri, Kimberly Strong, and Debra Wunch

Data sets

GES DISC data NASA https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2_DATA/OCO2_L2_Lite_FP.10r/

TCCON data from Bremen (DE) J. Notholt, C. Petri, T. Warneke, N. M. Deutscher, M. Palm, M. Buschmann, C. Weinzierl, R. C. Macatangay, and P. Grupe https://doi.org/10.14291/TCCON.GGG2014.BREMEN01.R1

TCCON data from Bialystok (PL) N. M. Deutscher, J. Notholt, J. Messerschmidt, C. Weinzierl, T. Warneke, C. Petri, and P. Grupe https://doi.org/10.14291/TCCON.GGG2014.BIALYSTOK01.R2

TCCON data from Sodankylä (FI) R. Kivi, P. Heikkinen, and E. Kyrö https://doi.org/10.14291/TCCON.GGG2014.SODANKYLA01.R0/1149280

TCCON data from Ny Ålesund, Spitsbergen (NO) J. Notholt, T. Warneke, C. Petri, N. M. Deutscher, C. Weinzierl, M. Palm, and M. Buschmann https://doi.org/10.14291/TCCON.GGG2014.NYALESUND01.R1

TCCON data from East Trout Lake, SK (CA) D. Wunch, J. Mendonca, O. Colebatch, N. T. Allen, J.-F. Blavier, S. Roche, J. Hedelius, G. Neufeld, S. Springett, D. Worthy, R. Kessler, and K. Strong https://doi.org/10.14291/TCCON.GGG2014.EASTTROUTLAKE01.R1

TCCON data from Eureka (CA) K. Strong, S. Roche, J. E. Franklin, J. Mendonca, E. Lutsch, D. Weaver, P. F. Fogal, J. R. Drummond, R., Batchelor, and R. Lindenmaier https://doi.org/10.14291/TCCON.GGG2014.EUREKA01.R3

TCCON data from Park Falls (US) P. O. Wennberg, C. M. Roehl, D. Wunch, G. C. Toon, J.-F. Blavier, R. Washenfelder, G. Keppel-Aleks, N. T. Allen, and J. Ayers https://doi.org/10.14291/TCCON.GGG2014.PARKFALLS01.R1

TCCON data from Rikubetsu (JP) I. Morino, N. Yokozeki, T. Matsuzaki, and M. Horikawa https://doi.org/10.14291/TCCON.GGG2014.RIKUBETSU01.R2

Download
Short summary
Machine learning has become an important tool for pattern recognition in many applications. In this study, we used a neural network to improve the data quality of OCO-2 measurements made at northern high latitudes. The neural network was trained and used as a binary classifier to filter out bad OCO-2 measurements in order to increase the accuracy and precision of OCO-2 XCO2 measurements in the Boreal and Arctic regions.