Articles | Volume 15, issue 8
Research article
25 Apr 2022
Research article |  | 25 Apr 2022

Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign

James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak

Data sets

NOAA Microwave Radiometer Data and Thermodynamic Profile Retrievals B. Adler, L. Bianco, J. Duncan, D. D. Turner, and J. M. Wilczak

NOAA Planetary Boundary Layer Heights (PBLH) derived from the NOAA/PSL 915-MHz Wind Profiler Radars L. Bianco and J. Duncan

CLAMPS1 Doppler Lidar VAD Data P. Klein, E. Smith and T. Bell


NOAA/GML RadSys RadFlux Analysis Products (Radiation and Cloud), ARV Lakeland Site L. Riihimaki, K. Lantz, and J. Sedlar

NOAA/GML RadSys RadFlux Analysis Products (Radiation and Cloud), PRW Prentice Site L. Riihimaki, K. Lantz and J. Sedlar

NOAA/GML Ceilometer Data, ARV site J. Sedlar, L. Riihimaki and K. Lantz

NOAA/GML Ceilometer Data, PRW site J. Sedlar, L. Riihimaki and K. Lantz

SSEC SPARC AERI Thermodynamic Profiles at WLEF Tower Site T. Wagner

NOAA PSL Radar Wind Profiler, Radio Acoustic Sounding System, and Surface Meteorology Data J. Wilczak and D. Gottas

Cheesehead NCAR

Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.