Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2591-2022
https://doi.org/10.5194/amt-15-2591-2022
Research article
 | 
29 Apr 2022
Research article |  | 29 Apr 2022

Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles

Christos Stamatis and Kelley Claire Barsanti

Data sets

christos-stamatis/supervised_pattern_recognition: (v3.0) C. Stamatis https://doi.org/10.5281/zenodo.6336170

Download
Short summary
Building on the identification of hundreds of gas-phase chemicals in smoke samples from laboratory and field studies, an algorithm was developed that successfully identified chemical patterns that were consistent among types of trees and unique between types of trees that are common fuels in western coniferous forests. The algorithm is a promising approach for selecting chemical speciation profiles for air quality modeling using a highly reduced suite of measured compounds.