Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2591-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2591-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles
Christos Stamatis
Department of Chemical and Environmental Engineering and College of Engineering – Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
Kelley Claire Barsanti
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering and College of Engineering – Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
Related authors
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
James D. A. Butler, Afsara Tasnia, Deep Sengupta, Nathan Kreisberg, Kelley C. Barsanti, Allen H. Goldstein, Chelsea V. Preble, Rebecca A. Sugrue, and Thomas W. Kirchstetter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2295, https://doi.org/10.5194/egusphere-2025-2295, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Prescribed burns are controlled fires used to prevent wildfires. Smoke emissions were measured to characterize emission factors and optical properties of black and brown soot particles. Brown particles were emitted at 7–14 times that of black particles and contributed 82 % of atmospheric absorption by particles for ultraviolet light and 23 % for total solar radiation. These findings will improve inventories and climate models for prescribed burns.
William P. L. Carter, Jia Jiang, Zhizhao Wang, and Kelley C. Barsanti
EGUsphere, https://doi.org/10.5194/egusphere-2025-1183, https://doi.org/10.5194/egusphere-2025-1183, 2025
Short summary
Short summary
The SAPRC Atmospheric Chemical Mechanism Generation System (MechGen) generates explicit chemical reaction mechanisms for organic compounds. MechGen has been used for decades in the development of the widely-used SAPRC mechanisms. This manuscript, detailing the software system, and a companion manuscript, detailing the chemical basis, represent the first complete documentation of MechGen. This manuscript includes examples and instructions for generating explicit and reduced mechanisms.
William P. L. Carter, Jia Jiang, John J. Orlando, and Kelley C. Barsanti
Atmos. Chem. Phys., 25, 199–242, https://doi.org/10.5194/acp-25-199-2025, https://doi.org/10.5194/acp-25-199-2025, 2025
Short summary
Short summary
This paper describes the scientific basis for gas-phase atmospheric chemical mechanisms derived using the SAPRC mechanism generation system, MechGen. It can derive mechanisms for most organic compounds with C, H, O, or N atoms, including initial reactions of organics with OH, O3, NO3, and O3P or by photolysis, as well as the reactions of the various types of intermediates that are formed. The paper includes a description of areas of uncertainty where additional research and updates are needed.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Vignesh Vasudevan-Geetha, Lee Tiszenkel, Zhizhao Wang, Robin Russo, Daniel Bryant, Julia Lee-Taylor, Kelley Barsanti, and Shan-Hu Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-2454, https://doi.org/10.5194/egusphere-2024-2454, 2024
Short summary
Short summary
Our laboratory experiments using two high-resolution mass spectrometers show that these OOMs can also form within the particle phase, in addition to gas-to-particle conversion processes. Our results demonstrate that particle-phase formation processes can contribute to the formation and growth of new particles in biogenic environments.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Qi Li, Jia Jiang, Isaac K. Afreh, Kelley C. Barsanti, and David R. Cocker III
Atmos. Chem. Phys., 22, 3131–3147, https://doi.org/10.5194/acp-22-3131-2022, https://doi.org/10.5194/acp-22-3131-2022, 2022
Short summary
Short summary
Chamber-derived secondary organic aerosol (SOA) yields from camphene are reported for the first time. The role of peroxy radicals (RO2) was investigated using chemically detailed box models. We observed higher SOA yields (up to 64 %) in the experiments with added NOx than without due to the formation of highly oxygenated organic molecules (HOMs) when
NOx is present. This work can improve the representation of camphene in air quality models and provide insights into other monoterpene studies.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021, https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary
Short summary
We explored molecular properties affecting atmospheric particle formation efficiency and derived a parameterization between particle formation rate and heterodimer concentration, which showed good agreement to previously reported experimental data. Considering the simplicity of calculating heterodimer concentration, this approach has potential to improve estimates of global cloud condensation nuclei in models that are limited by the computational expense of calculating particle formation rate.
Isaac Kwadjo Afreh, Bernard Aumont, Marie Camredon, and Kelley Claire Barsanti
Atmos. Chem. Phys., 21, 11467–11487, https://doi.org/10.5194/acp-21-11467-2021, https://doi.org/10.5194/acp-21-11467-2021, 2021
Short summary
Short summary
This is the first mechanistic modeling study of secondary organic aerosol (SOA) from the understudied monoterpene, camphene. The semi-explicit chemical model GECKO-A predicted camphene SOA yields that were ~2 times α-pinene. Using 50/50 α-pinene + limonene as a surrogate for camphene increased predicted SOA mass from biomass burning fuels by up to ~100 %. The accurate representation of camphene in air quality models can improve predictions of SOA when camphene is a dominant monoterpene.
Cited articles
Abdi, H. and Williams, L. J.: Principal component analysis, WIREs Comput.
Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010. a
Alvarado, M. J. and Prinn, R. G.: Formation of ozone and growth of aerosols in
young smoke plumes from biomass burning: 1. Lagrangian parcel studies,
J. Geophys. Res.-Atmos., 114, D09306,
https://doi.org/10.1029/2008JD011144, 2009. a
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. a
Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C.,
Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W.,
Dias, P. L. S., Talbot, R. W., Torres, A. L., and Wofsy, S. C.:
Biomass-burning emissions and associated haze layers over Amazonia, J. Geophys. Res.-Atmos., 93, 1509–1527,
https://doi.org/10.1029/JD093iD02p01509, 1988. a
Chen, J., Anderson, K., Pavlovic, R., Moran, M. D., Englefield, P., Thompson, D. K., Munoz-Alpizar, R., and Landry, H.: The FireWork v2.0 air quality forecast system with biomass burning emissions from the Canadian Forest Fire Emissions Prediction System v2.03, Geosci. Model Dev., 12, 3283–3310, https://doi.org/10.5194/gmd-12-3283-2019, 2019. a
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A.: Large
wildfire trends in the western United States, 1984–2011, Geophys.
Res. Lett., 41, 2928–2933, https://doi.org/10.1002/2014GL059576,
2014. a, b
Dong, Y. and Peng, C.-Y. J.: Principled missing data methods for researchers,
SpringerPlus, 2, 222, https://doi.org/10.1186/2193-1801-2-222, 2013. a, b
Elkan, C.: Using the Triangle Inequality to Accelerate K-Means, in: Proceedings
of the Twentieth International Conference on International Conference on
Machine Learning, ICML'03, p. 147–153, 21–24 August2003, Washington DC, USA, AAAI Press, 2003. a
Fu, P., Kawamura, K., and Barrie, L. A.: Photochemical and Other Sources of
Organic Compounds in the Canadian High Arctic Aerosol Pollution during
Winter−Spring, Environ. Sci. Technol., 43, 286–292,
https://doi.org/10.1021/es803046q, 2009. a
Gewers, F. L., Ferreira, G. R., Arruda, H. F. D., Silva, F. N., Comin, C. H.,
Amancio, D. R., and Costa, L. D. F.: Principal Component Analysis: A Natural
Approach to Data Exploration, ACM Comput. Surv., 54, 1–34, https://doi.org/10.1145/3447755,
2021. a, b
Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E.,
Davies, M. A., and Hao, W. M.: Measurements of excess O3, CO2, CO, CH4, C2H4,
C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass
burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR),
J. Geophys. Res.-Atmos., 105, 22147–22166,
https://doi.org/10.1029/2000JD900287, 2000. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning, Springer, New York, 145 pp., https://doi.org/10.1007/978-0-387-84858-7, 2009. a
Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., and Barsanti, K. C.: Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865–1899, https://doi.org/10.5194/acp-15-1865-2015, 2015. a
Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J., and Barsanti, K. C.: Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors, Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, 2017. a
Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H., and Barsanti, K. C.: Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography, Atmos. Chem. Phys., 18, 17801–17817, https://doi.org/10.5194/acp-18-17801-2018, 2018. a
Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J.,
Stamatis, C., York, R. A., Foster, D., Stephens, S. L., Goldstein, A. H., and
Barsanti, K. C.: Highly Speciated Measurements of Terpenoids Emitted from
Laboratory and Mixed-Conifer Forest Prescribed Fires, Environ. Sci.
Technol., 53, 9418–9428, https://doi.org/10.1021/acs.est.9b02612,
2019. a, b, c, d, e, f, g, h, i
Holder, A. L., Gullett, B. K., Urbanski, S. P., Elleman, R., O'Neill, S.,
Tabor, D., Mitchell, W., and Baker, K. R.: Emissions from prescribed burning
of agricultural fields in the Pacific Northwest, Atmos. Environ.,
166, 22–33,
2017. a
Hu, Y. Q., Fernandez-Anez, N., Smith, T. E. L., and Rein, G.: Review of
emissions from smouldering peat fires and their contribution to regional haze
episodes, Int. J. Wild. Fire, 27, 293–312,
https://doi.org/10.1071/WF17084, 2018. a
Jaffe, D. A., O’Neill, S. M., Larkin, N. K., Holder, A. L., Peterson, D. L.,
Halofsky, J. E., and Rappold, A. G.: Wildfire and prescribed burning impacts
on air quality in the United States, J. Air Waste Manage.
Assoc., 70, 583–615, https://doi.org/10.1080/10962247.2020.1749731, 2020. a, b
Jain, A. K.: Data clustering: 50 years beyond K-means, Pattern Recogn.
Lett., 31, 651–666, https://doi.org/10.1016/j.patrec.2009.09.011,
award winning papers from the 19th International Conference on Pattern
Recognition (ICPR), 2010. a, b
Jakobsen, J. C., Gluud, C., Wetterslev, J., and Winkel, P.: When and how should
multiple imputation be used for handling missing data in randomised clinical
trials – a practical guide with flowcharts, BMC Med. Res.
Method., 17, 162, https://doi.org/10.1186/s12874-017-0442-1, 2017. a
Jen, C. N., Liang, Y., Hatch, L. E., Kreisberg, N. M., Stamatis, C.,
Kristensen, K., Battles, J. J., Stephens, S. L., York, R. A., Barsanti,
K. C., and Goldstein, A. H.: High Hydroquinone Emissions from Burning
Manzanita, Environ. Sci. Technol. Lett., 5, 309–314,
https://doi.org/10.1021/acs.estlett.8b00222, 2018. a
Johnson, K. J. and Synovec, R. E.: Pattern recognition of jet fuels:
comprehensive GC × GC with ANOVA-based feature selection and principal
component analysis, Chemometr. Intell. Lab., 60,
225–237, https://doi.org/10.1016/S0169-7439(01)00198-8, fourth
International Conference on Environ metrics and Chemometrics held in Las
Vegas, NV, USA, 18–20 September 2000, 2002. a, b, c
Jolliffe, I.: Principal Component Analysis, Springer, New York, 188 pp., https://doi.org/10.1007/b98835, 2002. a
Keane, R. E. and Lutes, D.: First-Order Fire Effects Model (FOFEM), 1–5,
Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-51727-8_74-1, 2018. a
Kochanski, A. K., Pardyjak, E. R., Stoll, R., Gowardhan, A., Brown, M. J., and
Steenburgh, W. J.: One-Way Coupling of the WRF–QUIC Urban Dispersion
Modeling System, J. Appl. Meteorol. Climatol., 54, 2119–2139, https://doi.org/10.1175/JAMC-D-15-0020.1, 2015. a
Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, 2018. a, b
Lever, J., Krzywinski, M., and Altman, N.: Principal component analysis, Nat.
Method., 14, 641–642, https://doi.org/10.1038/nmeth.4346, 2017. a
Lindaas, J., Pollack, I. B., Garofalo, L. A., Pothier, M. A., Farmer, D. K.,
Kreidenweis, S. M., Campos, T. L., Flocke, F., Weinheimer, A. J., Montzka,
D. D., Tyndall, G. S., Palm, B. B., Peng, Q., Thornton, J. A., Permar, W.,
Wielgasz, C., Hu, L., Ottmar, R. D., Restaino, J. C., Hudak, A. T., Ku,
I.-T., Zhou, Y., Sive, B. C., Sullivan, A., Collett Jr., J. L., and Fischer,
E. V.: Emissions of Reactive Nitrogen From Western U.S. Wildfires During
Summer 2018, J. Geophys. Res.-Atmos., 126,
e2020JD032657, https://doi.org/10.1029/2020JD032657, 2021. a
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake,
D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S.,
Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L.,
Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B., Peischl, J., Pollack,
I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J., Shilling, J. E.,
Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A. P., Wennberg,
P. O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements of western U.S.
wildfire emissions: Comparison with prescribed burning and air quality
implications, J. Geophys. Res.-Atmos., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017. a, b
McKenzie, D., O’Neill, S. M., Larkin, N. K., and Norheim, R. A.: Integrating
models to predict regional haze from wildland fire, Ecol. Modell.,
199, 278–288, https://doi.org/10.1016/j.ecolmodel.2006.05.029, 2006. a
McMeeking, G. R., Kreidenweis, S. M., Carrico, C. M., Lee, T., Collett Jr.,
J. L., and Malm, W. C.: Observations of smoke-influenced aerosol during the
Yosemite Aerosol Characterization Study: Size distributions and chemical
composition, J. Geophys. Res.-Atmos., 110, D09206,
https://doi.org/10.1029/2004JD005389, 2005. a
McNeish, D.: Missing data methods for arbitrary missingness with small samples,
J. Appl. Stat., 44, 24–39,
https://doi.org/10.1080/02664763.2016.1158246, 2017. a
Miller, J. D., Safford, H. D., Crimmins, M., and Thode, A. E.: Quantitative
Evidence for Increasing Forest Fire Severity in the Sierra Nevada and
Southern Cascade Mountains, California and Nevada, USA, Ecosystems, 12,
16–32, https://doi.org/10.1007/s10021-008-9201-9, 2009. a, b
Nelson, K. J., Connot, J., Peterson, B., and Martin, C.: The LANDFIRE Refresh
Strategy: Updating the National Dataset, Fire Ecol., 9, 80–101,
https://doi.org/10.4996/fireecology.0902080, 2013. a
Ottmar, R.: Consume 3.0 – A Software Tool for Computing Fuel Consumption, Fire
Sci. Brief, p. 6,
https://www.firescience.gov/projects/briefs/98-1-9-06_FSBrief55.pdf (last access: 6 April 2022),
2009. a
Park, R. J., Jacob, D. J., Kumar, N., and Yantosca, R. M.: Regional visibility
statistics in the United States: Natural and transboundary pollution
influences, and implications for the Regional Haze Rule, Atmos.
Environ., 40, 5405–5423, 2006. a
Pavlovic, R., Chen, J., Anderson, K., Moran, M. D., Beaulieu, P.-A., Davignon,
D., and Cousineau, S.: The FireWork air quality forecast system with
near-real-time biomass burning emissions: Recent developments and evaluation
of performance for the 2015 North American wildfire season, J.
Air Waste Manage. Assoc., 66, 819–841,
https://doi.org/10.1080/10962247.2016.1158214, 2016. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Machine Learn.
Res., 12, 2825–2830, 2011. a
Permar, W., Wang, Q., Selimovic, V., Wielgasz, C., Yokelson, R. J., Hornbrook,
R. S., Hills, A. J., Apel, E. C., Ku, I.-T., Zhou, Y., Sive, B. C., Sullivan,
A. P., Collett Jr., J. L., Campos, T. L., Palm, B. B., Peng, Q., Thornton,
J. A., Garofalo, L. A., Farmer, D. K., Kreidenweis, S. M., Levin, E. J. T.,
DeMott, P. J., Flocke, F., Fischer, E. V., and Hu, L.: Emissions of Trace
Organic Gases From Western U.S. Wildfires Based on WE-CAN Aircraft
Measurements, J. Geophys. Res.-Atmos., 126,
e2020JD033838, https://doi.org/10.1029/2020JD033838, 2021. a
Prichard, S., Larkin, N. S., Ottmar, R., French, N. H., Baker, K., Brown, T.,
Clements, C., Dickinson, M., Hudak, A., Kochanski, A., Linn, R., Liu, Y.,
Potter, B., Mell, W., Tanzer, D., Urbanski, S., and Watts, A.: The Fire and
Smoke Model Evaluation Experiment – A Plan for Integrated, Large
Fire – Atmosphere Field Campaigns, Atmosphere, 10, 2,
https://doi.org/10.3390/atmos10020066, 2019. a
Prichard, S. J., O'Neill, S. M., Eagle, P., Andreu, A. G., Drye, B., Dubowy,
J., Urbanski, S., and Strand, T. M.: Wildland fire emission factors in North
America: synthesis of existing data, measurement needs and management
applications, Int. J. Wildl. Fire, 29, 132–147,
https://doi.org/10.1071/WF19066, 2020. a, b
Reeves, M. C., Ryan, K. C., Rollins, M. G., and Thompson, T. G.: Spatial fuel
data products of the LANDFIRE Project, Int. J. Wildl.
Fire, 18, 250–267, https://doi.org/10.1071/WF08086, 2009. a
Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018. a, b
Selimovic, V., Yokelson, R. J., Warneke, C., Roberts, J. M., de Gouw, J., Reardon, J., and Griffith, D. W. T.: Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX, Atmos. Chem. Phys., 18, 2929–2948, https://doi.org/10.5194/acp-18-2929-2018, 2018. a, b, c
Simoneit, B. R.: Biomass burning – a review of organic tracers for smoke
from incomplete combustion, Appl. Geochem., 17, 129–162,
2002. a
Simpson, I. J., Akagi, S. K., Barletta, B., Blake, N. J., Choi, Y., Diskin, G. S., Fried, A., Fuelberg, H. E., Meinardi, S., Rowland, F. S., Vay, S. A., Weinheimer, A. J., Wennberg, P. O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R. J., and Blake, D. R.: Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN, Atmos. Chem. Phys., 11, 6445–6463, https://doi.org/10.5194/acp-11-6445-2011, 2011. a
Stamatis, C.: christos-stamatis/supervised_pattern_recognition: 70(v3.0), Zenodo [code], https://doi.org/10.5281/zenodo.6336170, 2022. a
Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., DeMott, P. J., Sullivan, R. C., Reardon, J., Ryan, K. C., Griffith, D. W. T., and Stevens, L.: Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4), Atmos. Chem. Phys., 14, 9727–9754, https://doi.org/10.5194/acp-14-9727-2014, 2014. a, b, c, d, e, f
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, 2015. a, b, c
Urbanski, S.: Wildland fire emissions, carbon, and climate: Emission factors,
Forest Ecol. Manage., 317, 51–60, 2014. a
Urbanski, S. P.: Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262, https://doi.org/10.5194/acp-13-7241-2013, 2013. a
Urbanski, S. P., Hao, W. M., and Baker, S.: Chapter 4 Chemical Composition of
Wildland Fire Emissions, Vol. 8, Wildland Fires and Air Pollution,
pp. 79–107, Elsevier, 2008. a
Vogelmann, J. E., Kost, J. R., Tolk, B., Howard, S., Short, K., Chen, X.,
Huang, C., Pabst, K., and Rollins, M. G.: Monitoring Landscape Change for
LANDFIRE Using Multi-Temporal Satellite Imagery and Ancillary Data,
IEEE J. Sel. Top. Appl.,
4, 252–264, https://doi.org/10.1109/JSTARS.2010.2044478, 2011. a
Wan, X., Kawamura, K., Ram, K., Kang, S., Loewen, M., Gao, S., Wu, G., Fu, P.,
Zhang, Y., Bhattarai, H., and Cong, Z.: Aromatic acids as biomass-burning
tracers in atmospheric aerosols and ice cores: A review, Environ.
Pollut., 247, 216–228, 2019. a
Ward, D. E. and Hardy, C. C.: Smoke emissions from wildland fires, Environ.
Int., 17, 117–134, 1991. a
Welke, J. E., Manfroi, V., Zanus, M., Lazzarotto, M., and Alcaraz Zini, C.:
Differentiation of wines according to grape variety using multivariate
analysis of comprehensive two-dimensional gas chromatography with
time-of-flight mass spectrometric detection data, Food Chem., 141,
3897–3905, https://doi.org/10.1016/j.foodchem.2013.06.100, 2013. a, b, c
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and Earlier Spring Increase Western U.S. Forest Wildfire Activity, Science,
313, 940–943, https://doi.org/10.1126/science.1128834, 2006. a
Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Babbitt, R. E.,
Wade, D. D., Bertschi, I., Griffith, D. W. T., and Hao, W. M.: Emissions of
formaldehyde, acetic acid, methanol, and other trace gases from biomass fires
in North Carolina measured by airborne Fourier transform infrared
spectroscopy, J. Geophys. Res.-Atmos., 104,
30109–30125, https://doi.org/10.1029/1999JD900817, 1999. a
Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stockwell, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres, P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T., Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung, H., and Weise, D. R.: Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmos. Chem. Phys., 13, 89–116, https://doi.org/10.5194/acp-13-89-2013, 2013. a, b
Zangrando, R., Barbaro, E., Zennaro, P., Rossi, S., Kehrwald, N. M., Gabrieli,
J., Barbante, C., and Gambaro, A.: Molecular Markers of Biomass Burning in
Arctic Aerosols, Environ. Sci. Technol., 47, 8565–8574,
https://doi.org/10.1021/es400125r, 2013. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich,
I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K.,
Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne,
J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y.,
Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys.
Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
a
Zhang, Y., Kong, S., Sheng, J., Zhao, D., Ding, D., Yao, L., Zheng, H., Wu, J.,
Cheng, Y., Yan, Q., Niu, Z., Zheng, S., Wu, F., Yan, Y., Liu, D., and Qi, S.:
Real-time emission and stage-dependent emission factors/ratios of specific
volatile organic compounds from residential biomass combustion in China,
Atmos. Res., 248, 105189, 2021. a
Ziółkowska, A., Wąsowicz, E., and Jeleń, H. H.: Differentiation of wines
according to grape variety and geographical origin based on volatiles
profiling using SPME-MS and SPME-GC/MS methods, Food Chem., 213,
714–720, https://doi.org/10.1016/j.foodchem.2016.06.120, 2016. a, b
Short summary
Building on the identification of hundreds of gas-phase chemicals in smoke samples from laboratory and field studies, an algorithm was developed that successfully identified chemical patterns that were consistent among types of trees and unique between types of trees that are common fuels in western coniferous forests. The algorithm is a promising approach for selecting chemical speciation profiles for air quality modeling using a highly reduced suite of measured compounds.
Building on the identification of hundreds of gas-phase chemicals in smoke samples from...