Articles | Volume 15, issue 9
https://doi.org/10.5194/amt-15-2993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2993-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions
Finnish Meteorological Institute, Atmospheric Research Centre of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Ari Leskinen
Finnish Meteorological Institute, Atmospheric Research Centre of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Department of Applied Physics, Univ. of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Ville A. Kaikkonen
Unit of Measurement Technology, University of Oulu, Technology Park P.O. Box 127, 87400 Kajaani, Finland
Eero O. Molkoselkä
Optoelectronics and Measurement Techniques Unit, University of Oulu, P.O. Box 4500, 90014 Oulu, Finland
Anssi J. Mäkynen
Unit of Measurement Technology, University of Oulu, Technology Park P.O. Box 127, 87400 Kajaani, Finland
Optoelectronics and Measurement Techniques Unit, University of Oulu, P.O. Box 4500, 90014 Oulu, Finland
Jorma Joutsensaari
Department of Applied Physics, Univ. of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Silvia Calderon
Finnish Meteorological Institute, Atmospheric Research Centre of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Sami Romakkaniemi
Finnish Meteorological Institute, Atmospheric Research Centre of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Mika Komppula
Finnish Meteorological Institute, Atmospheric Research Centre of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
Related authors
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
Atmos. Chem. Phys., 25, 1639–1657, https://doi.org/10.5194/acp-25-1639-2025, https://doi.org/10.5194/acp-25-1639-2025, 2025
Short summary
Short summary
Every year a vast number of people experience allergic reactions due to exposure to airborne pollen. These symptoms are concentration dependent; thus accurate information about the pollen load in the atmosphere is essential. Moreover, pollen grains and fragments of it are likely to contribute to cloud processes and suppress precipitation. Here, we estimate the concentration and cloud-relevant parameters of birch pollen in the atmosphere using observations from a PollyXT and a CL61 ceilometer.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730, https://doi.org/10.5194/egusphere-2025-2730, 2025
Short summary
Short summary
Field campaigns suggest that secondary ice production (SIP) via millimeter-sized supercooled droplets is responsible for the rapid glaciation and precipitation development in summer cumulus congestus clouds that lack of ice nucleating particles. We used large-eddy-simulations with sectional representation of aerosol and hydrometeor microphysics that reproduced observed hydrometeor size distributions and explained how SIP boosted rates of aggregation processes that increase surface precipitation.
Viet Le, Konstantinos Matthaios Doulgeris, Mika Komppula, John Backman, Gholamhossein Bagheri, Eberhard Bodenschatz, and David Brus
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-148, https://doi.org/10.5194/essd-2025-148, 2025
Preprint withdrawn
Short summary
Short summary
This manuscript presents datasets collected during the Pallas Cloud Experiment in northern Finland during the autumn of 2022. We provide an overview of the payload that measured meteorological, cloud, and aerosol properties, and was deployed on tethered balloon systems across 21 flights. Additionally, we describe the datasets obtained, including details of the instruments on the payload.
Konstantinos Matthaios Doulgeris, Ville Kaikkonen, Harri Juttula, Eero Molkoselkä, Anssi Mäkynen, and David Brus
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-163, https://doi.org/10.5194/essd-2025-163, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This study presents data collected from ground based cloud instruments that measured cloud droplets during autumn 2022 in northern Finland. The research aimed to improve understanding of how clouds form and behave in cold regions. Measurements were taken directly inside clouds and include information on droplet sizes, water content, and weather conditions. The results support better climate and weather predictions.
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
Atmos. Chem. Phys., 25, 1639–1657, https://doi.org/10.5194/acp-25-1639-2025, https://doi.org/10.5194/acp-25-1639-2025, 2025
Short summary
Short summary
Every year a vast number of people experience allergic reactions due to exposure to airborne pollen. These symptoms are concentration dependent; thus accurate information about the pollen load in the atmosphere is essential. Moreover, pollen grains and fragments of it are likely to contribute to cloud processes and suppress precipitation. Here, we estimate the concentration and cloud-relevant parameters of birch pollen in the atmosphere using observations from a PollyXT and a CL61 ceilometer.
Harri Kokkola, Juha Tonttila, Silvia M. Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo Henrik Virtanen, Pekka Kolmonen, and Antti Arola
Atmos. Chem. Phys., 25, 1533–1543, https://doi.org/10.5194/acp-25-1533-2025, https://doi.org/10.5194/acp-25-1533-2025, 2025
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount of cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite-derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025, https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Xiaoxia Shang, Maria Filioglou, Julian Hofer, Moritz Haarig, Qiaoyun Hu, Philippe Goloub, Sami Romakkaniemi, and Mika Komppula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3460, https://doi.org/10.5194/egusphere-2024-3460, 2025
Short summary
Short summary
We have developed a new method to analyze the aerosol components in the atmosphere. Using depolarization information of laser light measured by lidar instruments, we can separate the three aerosol types in an aerosol mixture. This method has been applied to study the mineral dust from different regions.
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024, https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Short summary
Analysis of modeling, in situ, and remote sensing measurements reveals the microphysical state of orographic clouds and their response to aerosol from the boundary layer and free troposphere. We show that cloud response to aerosol is robust, as predicted supersaturation and cloud droplet number levels agree with those determined from in-cloud measurements. The ability to determine if clouds are velocity- or aerosol-limited allows for novel model constraints and remote sensing products.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Kalle Nordling, Jukka-Pekka Keskinen, Sami Romakkaniemi, Harri Kokkola, Petri Räisänen, Antti Lipponen, Antti-Ilari Partanen, Jaakko Ahola, Juha Tonttila, Muzaffer Ege Alper, Hannele Korhonen, and Tomi Raatikainen
Atmos. Chem. Phys., 24, 869–890, https://doi.org/10.5194/acp-24-869-2024, https://doi.org/10.5194/acp-24-869-2024, 2024
Short summary
Short summary
Our results show that the global model is stable and it provides meaningful results. This way we can include a physics-based presentation of sub-grid physics (physics which happens on a 100 m scale) in the global model, whose resolution is on a 100 km scale.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 23, 15149–15164, https://doi.org/10.5194/acp-23-15149-2023, https://doi.org/10.5194/acp-23-15149-2023, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Marje Prank, Juha Tonttila, Jaakko Ahola, Harri Kokkola, Thomas Kühn, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 22, 10971–10992, https://doi.org/10.5194/acp-22-10971-2022, https://doi.org/10.5194/acp-22-10971-2022, 2022
Short summary
Short summary
Aerosols and clouds persist as the dominant sources of uncertainty in climate projections. In this modelling study, we investigate the role of marine aerosols in influencing the lifetime of low-level clouds. Our high resolution simulations show that sea spray can both extend and shorten the lifetime of the cloud layer depending on the model setup. The impact of the primary marine organics is relatively limited while secondary aerosol from monoterpenes can have larger impact.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022, https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Short summary
Clouds are important for the climate, and cloud droplets have a significant role in cloud properties. Cloud droplets form when air rises and cools and water vapour condenses on small particles that can be natural or of anthropogenic origin. Currently, the updraft velocity, meaning how fast the air rises, is poorly represented in global climate models. In our study, we show three methods that will improve the depiction of updraft velocity and which properties are vital to updrafts.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Tomi Raatikainen, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 3763–3778, https://doi.org/10.5194/acp-22-3763-2022, https://doi.org/10.5194/acp-22-3763-2022, 2022
Short summary
Short summary
Mineral dust or similar ice-nucleating particles (INPs) are needed to initiate cloud droplet freezing at temperatures common in shallow clouds. In this work we examine how INPs that are released from the sea surface impact marine clouds. Our high-resolution simulations show that turbulent updraughts carry these particles effectively up to the clouds, where they initiate cloud droplet freezing. Sea surface INP emissions become more important with decreasing background dust INP concentrations.
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 2937–2953, https://doi.org/10.5194/acp-22-2937-2022, https://doi.org/10.5194/acp-22-2937-2022, 2022
Short summary
Short summary
This paper shows the specific impact of black carbon (BC) on the aerosol–planetary boundary layer (PBL) feedback and its influence on a Beijing haze episode. Overall, this paper shows that strong temperature inversions prevent BC heating within the PBL from significantly increasing PBL height, while BC above the PBL suppresses PBL development significantly through the day. From this we suggest a method by which both locally and regionally emitted BC may impact urban pollution episodes.
Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, and Nønne L. Prisle
Atmos. Chem. Phys., 22, 2669–2687, https://doi.org/10.5194/acp-22-2669-2022, https://doi.org/10.5194/acp-22-2669-2022, 2022
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six different model approaches to surface activity of organic aerosols and find significant differences between the models, especially with large fractions of organics in the dry particles.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Short summary
We regarded the banana shapes in the surface plots as a special kind of object (similar to cats) and applied an instance segmentation technique to automatically identify the new particle formation (NPF) events (especially the strongest ones), in addition to their growth rates, start times, and end times. The automatic method generalized well on datasets collected in different sites, which is useful for long-term data series analysis and obtaining statistical properties of NPF events.
Jutta Kesti, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, Maria Filioglou, Mika Komppula, Hannele Korhonen, and Heikki Lihavainen
Atmos. Chem. Phys., 22, 481–503, https://doi.org/10.5194/acp-22-481-2022, https://doi.org/10.5194/acp-22-481-2022, 2022
Short summary
Short summary
In this study we combined aerosol particle measurements at the surface with a scanning Doppler lidar providing vertical profiles of the atmosphere to study the effect of different boundary layer conditions on aerosol particle properties in the understudied Arabian Peninsula region. The instrumentation used in this study enabled us to identify periods when pollution from remote sources was mixed down to the surface and initiated new particle formation in the growing boundary layer.
Ian Boutle, Wayne Angevine, Jian-Wen Bao, Thierry Bergot, Ritthik Bhattacharya, Andreas Bott, Leo Ducongé, Richard Forbes, Tobias Goecke, Evelyn Grell, Adrian Hill, Adele L. Igel, Innocent Kudzotsa, Christine Lac, Bjorn Maronga, Sami Romakkaniemi, Juerg Schmidli, Johannes Schwenkel, Gert-Jan Steeneveld, and Benoît Vié
Atmos. Chem. Phys., 22, 319–333, https://doi.org/10.5194/acp-22-319-2022, https://doi.org/10.5194/acp-22-319-2022, 2022
Short summary
Short summary
Fog forecasting is one of the biggest problems for numerical weather prediction. By comparing many models used for fog forecasting with others used for fog research, we hoped to help guide forecast improvements. We show some key processes that, if improved, will help improve fog forecasting, such as how water is deposited on the ground. We also showed that research models were not themselves a suitable baseline for comparison, and we discuss what future observations are required to improve them.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048, https://doi.org/10.5194/acp-21-1035-2021, https://doi.org/10.5194/acp-21-1035-2021, 2021
Short summary
Short summary
The focus of this study is on rain enhancement by deliberate injection of small particles into clouds (
cloud seeding). The particles, usually released from an aircraft, are expected to enhance cloud droplet growth, but its practical feasibility is somewhat uncertain. To improve upon this, we simulate the seeding effects with a numerical model. The model reproduces the main features seen in field observations, with a strong sensitivity to the total mass of the injected particle material.
Xiaoxia Shang, Elina Giannakaki, Stephanie Bohlmann, Maria Filioglou, Annika Saarto, Antti Ruuskanen, Ari Leskinen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 15323–15339, https://doi.org/10.5194/acp-20-15323-2020, https://doi.org/10.5194/acp-20-15323-2020, 2020
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT have been combined with measurements of pollen type and concentration using a traditional pollen sampler at a rural forest site in Kuopio, Finland. The depolarization ratio was enhanced when there were pollen grains in the atmosphere, illustrating the potential of lidar to track pollen grains in the atmosphere. The depolarization ratio of pure pollen particles was assessed for birch and pine pollen using a novel algorithm.
Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 20, 14393–14405, https://doi.org/10.5194/acp-20-14393-2020, https://doi.org/10.5194/acp-20-14393-2020, 2020
Short summary
Short summary
Our work presents the observational results of secondary organic aerosol (SOA) formation in the presence of ammonia. The particle-phase ammonium was continuously produced even after SOA formation had ceased. The gas-phase organic acids were observed to contribute to the formed particle-phase ammonium salts. This study suggests that the presence of ammonia may change the mass and chemical composition of large-size SOA particles and can potentially alter the aerosol impact on climate change.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Jaakko Ahola, Hannele Korhonen, Juha Tonttila, Sami Romakkaniemi, Harri Kokkola, and Tomi Raatikainen
Atmos. Chem. Phys., 20, 11639–11654, https://doi.org/10.5194/acp-20-11639-2020, https://doi.org/10.5194/acp-20-11639-2020, 2020
Short summary
Short summary
In this study, we present an improved cloud model that reproduces the behaviour of mixed-phase clouds containing liquid droplets and ice crystals in more detail than before. This model is a convenient computational tool that enables the study of phenomena that cannot fit into a laboratory. These clouds have a significant role in climate, but they are not yet properly understood. Here, we show the advantages of the new model in a case study focusing on Arctic mixed-phase clouds.
Konstantinos-Matthaios Doulgeris, Mika Komppula, Sami Romakkaniemi, Antti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020, https://doi.org/10.5194/amt-13-5129-2020, 2020
Short summary
Short summary
We intercompared three cloud spectrometers ground setups in conditions with frequently occurring supercooled clouds. The measurements were conducted during the Pallas Cloud Experiment (PaCE) in 2013, in the Finnish sub-Arctic region at Sammaltunturi station. The main meteorological parameters influencing the spectrometers' performance was the wind direction. Final recommendations and our view on the main limitations of each spectrometer ground setup are presented.
Innocent Kudzotsa, Harri Kokkola, Juha Tonttila, Tomi Raatikainen, and Sami Romakkaniemi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-851, https://doi.org/10.5194/acp-2020-851, 2020
Publication in ACP not foreseen
Cited articles
Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., and
Veyrat-Charvillon, N.: Mutual
Information Analysis: a Comprehensive Study, J. Cryptol., 24, 269–291, https://doi.org/10.1007/s00145-010-9084-8, 2011.
Baumgardner, D., Brenguier, J., Bucholtz, A., Coe, H., DeMott, P., Garrett,
T., Gayet, J., Hermann, M., Heymsfield, A., Korolev, A., Krämer, M.,
Petzold, A., Strapp, W., Pilewskie, P., Taylor, J., Twohy, C., Wendisch, M.,
Bachalo,W., and Chuang, P.: Airborne instruments to measure atmospheric
aerosol particles, clouds and radiation: A cook's tour of mature and
emerging technology, Atmos. Res., 102, 10–29,
https://doi.org/10.1016/j.atmosres.2011.06.021, 2011.
Baumgardner, D., Newton, R., Krämer, M., Meyer, J., Beyer, A., Wendisch,
M., and Vochezer, P.: The Cloud Particle Spectrometer with Polarization
Detection (CPSPD): A next generation open-path cloud probe for
distinguishing liquid cloud droplets from ice crystals, Atmos. Res., 142,
2–14, https://doi.org/10.1016/j.atmosres.2013.12.010, 2014.
Beck, A, Henneberger, J., Schöpfer, S., Fugal, J., and Lohmann, U.: HoloGondel: in situ observations
on a cable car in the Swiss Alps using a holographic imager, Atmos. Meas. Tech., 10, 459–476,
https://doi.org/10.5194/amt-10-459-2017, 2017.
Bohren, C. F. and Huffman, D. R: Absorption and scattering of light by
small particles, John Wiley & Sons, New York, NY, USA, https://doi.org/10.1002/9783527618156, 1983.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.,
Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K.,
Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, in: Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013.
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 25,
120–125, 2000.
Dawe, J. T. and Austin, P. H.: Direct entrainment and detrainment rate
distributions of individual shallow cumulus clouds in an LES, Atmos. Chem.
Phys., 13, 7795–7811, https://doi.org/10.5194/acp-13-7795-2013, 2013.
Doulgeris, K.-M., Komppula, M., Romakkaniemi, S., Hyvärinen, A.-P.,
Kerminen, V.-M., and Brus, D.: In situ cloud ground-based measurements in
the Finnish sub-arctic: intercomparison of three cloud spectrometer setups,
Atmos. Meas. Tech., 13, 5129–5147, https://doi.org/10.5194/amt-13-5129-2020, 2020.
Droplet Measurement Technologies: Data Analysis User's Guide Chapter I:
Single Particle Light Scattering (DOC-0222, Rev A), Droplet
Measurement Technologies, Inc., Boulder, USA, 2009.
Finstad, K. J., Lozowski, E. P., and Makkonen, L.: On the median volume
approximation for droplet collision efficiency, J. Atmos. Sci., 45,
4008–4012, https://doi.org/10.1175/1520-0469(1988)045<4008:OTMVDA>2.0.CO;2, 1988.
Fišak, J., Řezakova, Ď., and Mattanen J.: Calculated and
measured values of liquid water content in clean and polluted environment,
Stud. Geophys. Geod., 50, 121–130, https://doi.org/10.1007/s11200-006-0006-z, 2006.
Fugal, J. P. and Shaw, R. A.: Cloud particle size distributions measured
with an airborne digital in-line holographic instrument, Atmos. Meas. Tech.,
2, 259–271, https://doi.org/10.5194/amt-2-259-2009, 2009.
Fugal, J. P., Schultz, T. J., and Shaw, R. A.: Practical methods for
automated reconstruction and characterization of particles in digital
in-line holograms, Meas. Sci. Technol., 20, 075501,
https://doi.org/10.1088/0957-0233/20/7/075501, 2009.
Glenn, I. B., Feingold, G., Gristey, J. J., and Yamaguchi, T.:
Quantification of the radiative effect of aerosol–cloud interactions in
shallow continental cumulus clouds, J. Atmos. Sci., 77, 2905–2920,
https://doi.org/10.1175/JAS-D-19-0269.1, 2020.
Gonser, S. G., Klemm, O., Griessbaum, F., Chang, S.-C., Chu, H.-S., and
Hsia, Y.-J.: The relation between humidity and liquid water content in fog:
An experimental approach, Pure Appl. Geophys., 169, 821–833 https://doi.org/10.1007/s00024-011-0270-x, 2011.
Guyot, G., Gourbeyre, C., Febvre, G., Shcherbakov, V., Burnet, F., Dupont,
J.-C., Sellegri, K., and Jourdan, O.: Quantitative evaluation of seven
optical sensors for cloud microphysical measurements at the Puy-de-Dôme
Observatory, France, Atmos. Meas. Tech., 8, 4347–4367,
https://doi.org/10.5194/amt-8-4347-2015, 2015.
Harvey, A. H., Gallagher, J. S., and Sengers, J. M. H. L.: Revised
Formulation for the Refractive Index of Water and Steam as a Function of
Wavelength, Temperature and Density, J. Phys. Chem.
Ref. Data, 27, 761–774. https://doi.org/10.1063/1.556029, 1998.
Henneberger, J., Fugal, J. P., Stetzer, O., and Lohmann, U.: HOLIMO II: a
digital holographic instrument for ground-based in situ observations of
microphysical properties of mixed-phase clouds, Atmos. Meas. Tech., 6,
2975–2987, https://doi.org/10.5194/amt-6-2975-2013, 2013.
Hoyle, C. R., Webster, C. S., Rieder, H. R., Nenes, A., Hammer, E.,
Herrmann, E., Gysel, M., Bukowiescki, N., Weingartner, E., Steinbacker, M.,
and Baltensberger, U.: Chemical and physical influences on aerosol
activation in liquid clouds: a study based on observation from the
Jungfraujoch, Switzerland, Atmos. Chem. Phys., 16, 4043–4061,
https://doi.org/10.5194/acp-16-4043-2016, 2016.
IPCC: Climate Change 2007: Impacts, Adaptation and Vulnerability,
Contribution of Working Group II to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F.,
Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge
University Press, ISBN 978 0521 88010-7 Hardback, Cambridge, UK, 976 pp., 2007.
IPCC: Climate Change 2021: The Physical Science Basis, Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, J.
B. R., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L.,
Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, in press, https://doi.org/10.1017/9781009157896, 2021.
Madonna, F., Rosoldi, M., Güldner, J., Haefele, A., Kivi, R., Cadeddu,
M. P., Sisterson, D., and Pappalardo, G.: Quantifying the value of redundant
measurements at GCOS Reference Upper-Air Network sites, Atmos. Meas. Tech.,
7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014, 2014.
Juttula, H., Kaikkonen, V., and Mäkynen, A.: Study of the Aerodynamic Sampling Effects of a
Holographic Cloud Droplet Instrument, 2020 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC) 25–28 May 2020 Dubrovnik Croatia, no. 19784328, 1–5,
https://doi.org/10.1109/I2MTC43012.2020.9129363, 2020.
Kaikkonen, V. A., Molkoselkä, E. O., and Mäkynen, A. J.: A rotating
holographic imager for stationary cloud droplet and ice crystal
measurements, Opt. Rev., 27, 205–216, https://doi.org/10.1007/s10043-020-00583-y, 2020.
Knollenberg, R. G.: Techniques for Probing Cloud Microstructure, in: Clouds,
Their Formation, Optical Properties and Effects, edited by: Hobbs, P. V. and
Deepak, A., Academic Press, New York, NY, USA, 15–92, ISBN 9780323140973, 1981.
Kunkel, B. A.: Parametrization of droplet terminal velocity and extinction
coefficient in fog models, J. Clim. Appl. Meteorol., 23, 34–41,
https://doi.org/10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2,
1983.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L.: An overview
of microphysical properties of Arctic clouds observed in May and July 1998
during FIRE ACE, J. Geophys. Res., 106, 14989–15014,
https://doi.org/10.1029/2000JD900789, 2001.
Lawson, R. P., O'Connor, D., Zmarzly, P., Weaver, K., Baker, B., and Mo, Q.:
The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne,
High-Speed, High-Resolution Particle Imaging Probe, J. Atmos. Oceanic
Technol., 23, 1462–1477, 2006.
Leskinen, A., Portin, H., Komppula, M., Miettinen, P., Arola, A.,
Lihavainen, H., Hatakka, J., Laaksonen, A., and Lehtinen, K. E. J.: Overview
of the research activities and results at Puijo semi-urban measurement
station, Boreal Env. Res., 14, 576–590, 2009.
Leskinen, A., Arola, A., Komppula, M., Portin, H., Tiitta, P., Miettinen,
P., Romakkaniemi, S., Laaksonen, A., and Lehtinen, K. E. J.: Seasonal cycle
and source analyses of aerosol optical properties in a semi-urban
environment at Puijo station in Eastern Finland, Atmos. Chem. Phys., 12,
5647–5659, https://doi.org/10.5194/acp-12-5647-2012, 2012.
Li, J., Zhu, C., Chen, H., Zhao, D., Xue, L., Wang, X., Li, H., Liu, P.,
Liu, J, Zhang, C., Mu, Y., Zhang, W., Zhang, L., Herrmann, H., Li, K., Liu,
M., and Chen, J.: The evolution of cloud and aerosol microphysics at the
summit of Mt. Tai, China, Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, 2020.
Lloyd, G., Choularton, T. W., Bower, K. N., Gallagher, M. W., Connolly, P.
J., Flynn, M., Farrington, R., Crosier, J., Schlenczek, O., Fugal, J., and
Henneberger, J.: The origins of ice crystals measured in mixed-phase clouds
at the high-alpine site Jungfraujoch, Atmos. Chem. Phys., 15, 12953–12969,
https://doi.org/10.5194/acp-15-12953-2015, 2015.
Lloyd, G., Choularton, T., Bower, K., Crosier, J., Gallagher, M., Flynn, M.,
Dorsey, J., Liu, D., Taylor, J. W., Schlenczek, O., Fugal, J., Borrmann, S.,
Cotton, R., Field, P., and Blyth, A.: Small ice particles at slightly
supercooled temperatures in tropical maritime convection, Atmos. Chem.
Phys., 20, 3895–3904, https://doi.org/10.5194/acp-20-3895-2020, 2020.
Madonna, F., Rosoldi, M., Güldner, J., Haefele, A., Kivi, R., Cadeddu,
M. P., Sisterson, D., and Pappalardo, G.: Quantifying the value of redundant
measurements at GCOS Reference Upper-Air Network sites, Atmos. Meas. Tech.,
7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014, 2014.
Molkoselkä, E. O.: Icemet-server: Hologram processing and cloud droplet
analysis software for ICEMET-project,
https://github.com/molkoback/icemet-server (last access: 1 May 2022), 2020.
Molkoselkä, E. O., Kaikkonen, V. A., and Mäkynen, A. J.: Measuring atmospheric icing rate in mixedphase
clouds using filtered particle data, IEEE Transactions of Instrumentation and Measurement, 70,
1–8, 7001708, https://doi.org/10.1109/TIM.2020.3035562, 2021.
Nowak, J. L., Mohammadi, M., and Malinowski, S. P.: Applicability of the
VisiSize D30 shadowgraph system for cloud microphysical measurements, Atmos.
Meas. Tech., 14, 2615–2633, https://doi.org/10.5194/amt-14-2615-2021, 2021.
Portin, H., Komppula, M., Leskinen, A., Romakkaniemi, S., Laaksonen, A., and
Lehtinen, K. E. J.: Observations of aerosol-cloud interactions at the Puijo
semi-urban measurement station, Boreal Environ. Res., 14, 641–653, 2009.
Portin, H., Leskinen, A., Hao, L., Kortelainen, A., Miettinen, P., Jaatinen,
A., Laaksonen, A., Lehtinen, K. E. J., Romakkaniemi, S., and Komppula, M.:
The effect of local sources on particle size and chemical composition and
their role in aerosol–cloud interactions at Puijo measurement station,
Atmos. Chem. Phys., 14, 6021–6034, https://doi.org/10.5194/acp-14-6021-2014, 2014.
Ragno, A. and Hobbs, P. V.: Microstructures and precipitation development
in cumulus and small cumulonimbus clouds over the warm pool of the tropical
Pacific Ocean, Q. J. Roy. Meteorol. Soc., 131, 639–673 https://doi.org/10.1256/qj.04.13,
2005.
Ramelli, F., Beck, A., Henneberger, J., and Lohmann, U.: Using a holographic
imager on a tethered balloon system for microphysical observations of
boundary layer clouds, Atmos. Meas. Tech., 13, 925-939, https://doi.org/10.5194/amt-13-925-2020, 2020.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display system: READY, Environ. Model. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Ruuskanen, A., Romakkaniemi, S., Kokkola, H., Arola, A., Mikkonen, S.,
Portin, H., Virtanen, A., Lehtinen, K. E. J., Komppula, M., and Leskinen,
A.: Observations on aerosol optical properties and scavenging during cloud
events, Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021,
2021.
Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B.,
Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time
pollen monitoring using digital holography, Atmos. Meas. Tech., 13,
1539–1550, https://doi.org/10.5194/amt-13-1539-2020, 2020.
Schlenczek, O., Fugal, J. P., Lloyd, G., Bower, K. N., Choularton, T. W.,
Flynn, M., Crosier, J., and Borrmann, S.: Microphysical Properties of Ice
Crystal Precipitation and Surface-Generated Ice Crystals in a High Alpine
Environment in Switzerland, J. Appl. Meteorol. Clim., 56, 433–453,
2017.
Seinfeld, J. H. and Pandis S. N.: Atmospheric Chemistry and Physics: from
Air Pollution to Climate Change, 2nd Edn., J. Wiley & Sons, New York, ISBN-10 0-471-72018-6,
2006.
Spiegel, J. K., Zieger, P., Bukowiecki, N., Hammer, E., Weingartner, E., and
Eugster, W.: Evaluating the capabilities and uncertainties of droplet
measurements for the fog droplet spectrometer (FM-100), Atmos. Meas. Tech.,
5, 2237–2260, https://doi.org/10.5194/amt-5-2237-2012, 2012.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, Bull. Am. Meteorol. Soc., 96, 2059–2077,
2015.
Westbeld, A., Klemm, O., Griesbaum, F., Sträter, E., Larrain H., Osses, P., and Cereceda, P.: Fog deposition to a Tillandsia carpet in the Atacama
Desert, Ann. Geophys., 27, 3571–3576, https://doi.org/10.5194/angeo-27-3571-2009, 2009.
Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–2423,
https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Short summary
The novel holographic imaging instrument (ICEMET) was adapted to measure the microphysical properties of liquid clouds, and these values were compared with parallel measurements of a cloud droplet spectrometer (FM-120) and particle measurements using a twin-inlet system. When the intercomparison was carried out during isoaxial sampling, our results showed good agreement in terms of variability between the instruments. This agreement was confirmed using Mutual and Pearson correlation analyses.
The novel holographic imaging instrument (ICEMET) was adapted to measure the microphysical...