Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3779-2022
https://doi.org/10.5194/amt-15-3779-2022
Research article
 | 
24 Jun 2022
Research article |  | 24 Jun 2022

Ch3MS-RF: a random forest model for chemical characterization and improved quantification of unidentified atmospheric organics detected by chromatography–mass spectrometry techniques

Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, and Allen H. Goldstein

Viewed

Total article views: 2,437 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,726 637 74 2,437 171 67 61
  • HTML: 1,726
  • PDF: 637
  • XML: 74
  • Total: 2,437
  • Supplement: 171
  • BibTeX: 67
  • EndNote: 61
Views and downloads (calculated since 28 Mar 2022)
Cumulative views and downloads (calculated since 28 Mar 2022)

Viewed (geographical distribution)

Total article views: 2,437 (including HTML, PDF, and XML) Thereof 2,405 with geography defined and 32 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.