Articles | Volume 15, issue 12
Atmos. Meas. Tech., 15, 3779–3803, 2022
https://doi.org/10.5194/amt-15-3779-2022
Atmos. Meas. Tech., 15, 3779–3803, 2022
https://doi.org/10.5194/amt-15-3779-2022
Research article
24 Jun 2022
Research article | 24 Jun 2022

Ch3MS-RF: a random forest model for chemical characterization and improved quantification of unidentified atmospheric organics detected by chromatography–mass spectrometry techniques

Emily B. Franklin et al.

Related authors

Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022,https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Comprehensive detection of analytes in large chromatographic datasets by coupling factor analysis with a decision tree
Sungwoo Kim, Brian M. Lerner, Donna T. Sueper, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 15, 5061–5075, https://doi.org/10.5194/amt-15-5061-2022,https://doi.org/10.5194/amt-15-5061-2022, 2022
Short summary
Combined organic and inorganic source apportionment on yearlong ToF-ACSM dataset at a suburban station in Athens
Olga Zografou, Maria Gini, Manousos I. Manousakas, Gang Chen, Athina C. Kalogridis, Evangelia Diapouli, Athina Pappa, and Konstantinos Eleftheriadis
Atmos. Meas. Tech., 15, 4675–4692, https://doi.org/10.5194/amt-15-4675-2022,https://doi.org/10.5194/amt-15-4675-2022, 2022
Short summary
Retrieval of the sea spray aerosol mode from submicron particle size distributions and supermicron scattering during LASIC
Jeramy L. Dedrick, Georges Saliba, Abigail S. Williams, Lynn M. Russell, and Dan Lubin
Atmos. Meas. Tech., 15, 4171–4194, https://doi.org/10.5194/amt-15-4171-2022,https://doi.org/10.5194/amt-15-4171-2022, 2022
Short summary
Automated identification of local contamination in remote atmospheric composition time series
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022,https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data
Alireza Moallemi, Rob L. Modini, Tatyana Lapyonok, Anton Lopatin, David Fuertes, Oleg Dubovik, Philippe Giaccari, and Martin Gysel-Beer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-170,https://doi.org/10.5194/amt-2022-170, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Bé, A. G., Chase, H. M., Liu, Y., Upshur, M. A., Zhang, Y., Tuladhar, A., Chase, Z. A., Bellcross, A. D., Wang, H. F., Wang, Z., Batista, V. S., Martin, S. T., Thomson, R. J., and Geiger, F. M.: Atmospheric â-caryophyllene-derived ozonolysis products at interfaces, ACS Earth Sp. Chem., 3, 158–169, https://doi.org/10.1021/acsearthspacechem.8b00156​​​​​​​, 2019. 
Bentéjac, C., Csörgõ, A., and Martínez-Muñoz, G.: A comparative analysis of gradient boosting algorithms, Artif. Intell. Rev., 54, 1937–1967, https://doi.org/10.1007/s10462-020-09896-5​​​​​​​, 2021. 
Bi, C., Krechmer, J. E., Frazier, G. O., Xu, W., Lambe, A. T., Claflin, M. S., Lerner, B. M., Jayne, J. T., Worsnop, D. R., Canagaratna, M. R., and Isaacman-VanWertz, G.: Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds, Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, 2021. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011. 
Download
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.