Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3779-2022
https://doi.org/10.5194/amt-15-3779-2022
Research article
 | 
24 Jun 2022
Research article |  | 24 Jun 2022

Ch3MS-RF: a random forest model for chemical characterization and improved quantification of unidentified atmospheric organics detected by chromatography–mass spectrometry techniques

Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, and Allen H. Goldstein

Related authors

Marine gas-phase sulfur emissions during an induced phytoplankton bloom
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022,https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Development and evaluation of an improved offline aerosol mass spectrometry technique
Christina N. Vasilakopoulou, Kalliopi Florou, Christos Kaltsonoudis, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 2837–2850, https://doi.org/10.5194/amt-16-2837-2023,https://doi.org/10.5194/amt-16-2837-2023, 2023
Short summary
SMEARcore – modular data infrastructure for atmospheric measurement stations
Anton Rusanen, Kristo Hõrrak, Lauri R. Ahonen, Tuomo Nieminen, Pasi P. Aalto, Pasi Kolari, Markku Kulmala, Tuukka Petäjä, and Heikki Junninen
Atmos. Meas. Tech., 16, 2781–2793, https://doi.org/10.5194/amt-16-2781-2023,https://doi.org/10.5194/amt-16-2781-2023, 2023
Short summary
A multiple-charging correction algorithm for a broad-supersaturation scanning cloud condensation nuclei (BS2-CCN) system
Najin Kim, Hang Su, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 16, 2771–2780, https://doi.org/10.5194/amt-16-2771-2023,https://doi.org/10.5194/amt-16-2771-2023, 2023
Short summary
An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events
Daniel A. Jaffe, Colleen Miller​​​​​​​, Katie Thompson, Brandon Finley, Manna Nelson, James Ouimette, and Elisabeth Andrews
Atmos. Meas. Tech., 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023,https://doi.org/10.5194/amt-16-1311-2023, 2023
Short summary
Typhoon-associated air quality over the Guangdong–Hong Kong–Macao Greater Bay Area, China: machine-learning-based prediction and assessment
Yilin Chen, Yuanjian Yang, and Meng Gao
Atmos. Meas. Tech., 16, 1279–1294, https://doi.org/10.5194/amt-16-1279-2023,https://doi.org/10.5194/amt-16-1279-2023, 2023
Short summary

Cited articles

Bé, A. G., Chase, H. M., Liu, Y., Upshur, M. A., Zhang, Y., Tuladhar, A., Chase, Z. A., Bellcross, A. D., Wang, H. F., Wang, Z., Batista, V. S., Martin, S. T., Thomson, R. J., and Geiger, F. M.: Atmospheric â-caryophyllene-derived ozonolysis products at interfaces, ACS Earth Sp. Chem., 3, 158–169, https://doi.org/10.1021/acsearthspacechem.8b00156​​​​​​​, 2019. 
Bentéjac, C., Csörgõ, A., and Martínez-Muñoz, G.: A comparative analysis of gradient boosting algorithms, Artif. Intell. Rev., 54, 1937–1967, https://doi.org/10.1007/s10462-020-09896-5​​​​​​​, 2021. 
Bi, C., Krechmer, J. E., Frazier, G. O., Xu, W., Lambe, A. T., Claflin, M. S., Lerner, B. M., Jayne, J. T., Worsnop, D. R., Canagaratna, M. R., and Isaacman-VanWertz, G.: Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds, Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, 2021. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011. 
Download
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.