Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3843-2022
https://doi.org/10.5194/amt-15-3843-2022
Research article
 | 
28 Jun 2022
Research article |  | 28 Jun 2022

Hierarchical deconvolution for incoherent scatter radar data

Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann

Related authors

Statistical comparison of electron precipitation during auroral breakups occurring either near the open–closed field line boundary or in the central part of the auroral oval
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024,https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere, https://doi.org/10.5194/egusphere-2024-802,https://doi.org/10.5194/egusphere-2024-802, 2024
Short summary
Improved method of estimating temperatures at meteor peak heights
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021,https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen
Atmos. Meas. Tech., 9, 1859–1869, https://doi.org/10.5194/amt-9-1859-2016,https://doi.org/10.5194/amt-9-1859-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee​​​​​​​ Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024,https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024,https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary

Cited articles

Adler, J. and Öktem, O.: Deep bayesian inversion, arXiv [preprint], arXiv:1811.05910, 14 November 2018. a
Arjas, A.: Hierarchical-deconvolution: Hierarchical deconvolution codes, Version V1, Zenodo [code], https://doi.org/10.5281/zenodo.6542699, 2022. a, b
Arjas, A., Hauptmann, A., and Sillanpää, M. J.: Estimation of dynamic SNP-heritability with Bayesian Gaussian process models, Bioinformatics, 36, 3795–3802, https://doi.org/10.1093/bioinformatics/btaa199, 2020a. a
Arjas, A., Roininen, L., Sillanpää, M. J., and Hauptmann, A.: Blind hierarchical deconvolution, in: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, 1–6, https://doi.org/10.1109/MLSP49062.2020.9231822, 2020b. a, b, c
Barker, R. H.: Group synchronizing of binary digital systems, in: Communication Theory, edited by: Jackson, W., Academic Press, New York, 273–287, 1953. a
Download
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.