Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3843-2022
https://doi.org/10.5194/amt-15-3843-2022
Research article
 | 
28 Jun 2022
Research article |  | 28 Jun 2022

Hierarchical deconvolution for incoherent scatter radar data

Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann

Related authors

First observations of continuum emission in dayside aurora
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent E. Ledvina
Ann. Geophys., 43, 349–367, https://doi.org/10.5194/angeo-43-349-2025,https://doi.org/10.5194/angeo-43-349-2025, 2025
Short summary
Multipurpose incoherent scatter measurement and data analysis techniques for EISCAT3D
Ilkka I. Virtanen, Ayanew Nigusie, Antti Kero, Neethal Thomas, and Juhana Lankinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2462,https://doi.org/10.5194/egusphere-2025-2462, 2025
Short summary
An empirical model of high-latitude ionospheric conductances based on EISCAT observations
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394,https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Effect of Ionospheric Variability on the Electron Energy Spectrum estimated from Incoherent Scatter Radar Measurements
Oliver Stalder, Björn Gustavsson, and Ilkka Virtanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2340,https://doi.org/10.5194/egusphere-2025-2340, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Toolkit for incoherent scatter radar experiment design and applications to EISCAT_3D
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1768,https://doi.org/10.5194/egusphere-2025-1768, 2025
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025,https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025,https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary
Observed impact of the GNSS clock data rate on radio occultation bending angles for Sentinel-6A and COSMIC-2
Sebastiano Padovan, Axel von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscan, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech., 18, 3217–3228, https://doi.org/10.5194/amt-18-3217-2025,https://doi.org/10.5194/amt-18-3217-2025, 2025
Short summary
A new method to retrieve relative humidity profiles from a synergy of Raman lidar, microwave radiometer, and satellite
Chengli Ji, Qiankai Jin, Feilong Li, Yuyang Liu, Zhicheng Wang, Jiajia Mao, Xiaoyu Ren, Yan Xiang, Wanlin Jian, Zhenyi Chen, and Peitao Zhao
Atmos. Meas. Tech., 18, 3179–3191, https://doi.org/10.5194/amt-18-3179-2025,https://doi.org/10.5194/amt-18-3179-2025, 2025
Short summary
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary

Cited articles

Adler, J. and Öktem, O.: Deep bayesian inversion, arXiv [preprint], arXiv:1811.05910, 14 November 2018. a
Arjas, A.: Hierarchical-deconvolution: Hierarchical deconvolution codes, Version V1, Zenodo [code], https://doi.org/10.5281/zenodo.6542699, 2022. a, b
Arjas, A., Hauptmann, A., and Sillanpää, M. J.: Estimation of dynamic SNP-heritability with Bayesian Gaussian process models, Bioinformatics, 36, 3795–3802, https://doi.org/10.1093/bioinformatics/btaa199, 2020a. a
Arjas, A., Roininen, L., Sillanpää, M. J., and Hauptmann, A.: Blind hierarchical deconvolution, in: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, 1–6, https://doi.org/10.1109/MLSP49062.2020.9231822, 2020b. a, b, c
Barker, R. H.: Group synchronizing of binary digital systems, in: Communication Theory, edited by: Jackson, W., Academic Press, New York, 273–287, 1953. a
Download
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Share