Articles | Volume 15, issue 12
https://doi.org/10.5194/amt-15-3843-2022
https://doi.org/10.5194/amt-15-3843-2022
Research article
 | 
28 Jun 2022
Research article |  | 28 Jun 2022

Hierarchical deconvolution for incoherent scatter radar data

Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann

Related authors

First observations of continuum emission in dayside aurora
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669,https://doi.org/10.5194/egusphere-2024-3669, 2024
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Statistical comparison of electron precipitation during auroral breakups occurring either near the open–closed field line boundary or in the central part of the auroral oval
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024,https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere, https://doi.org/10.5194/egusphere-2024-802,https://doi.org/10.5194/egusphere-2024-802, 2024
Short summary
Improved method of estimating temperatures at meteor peak heights
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021,https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
Johannes Norberg, Ilkka I. Virtanen, Lassi Roininen, Juha Vierinen, Mikko Orispää, Kirsti Kauristie, and Markku S. Lehtinen
Atmos. Meas. Tech., 9, 1859–1869, https://doi.org/10.5194/amt-9-1859-2016,https://doi.org/10.5194/amt-9-1859-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Adler, J. and Öktem, O.: Deep bayesian inversion, arXiv [preprint], arXiv:1811.05910, 14 November 2018. a
Arjas, A.: Hierarchical-deconvolution: Hierarchical deconvolution codes, Version V1, Zenodo [code], https://doi.org/10.5281/zenodo.6542699, 2022. a, b
Arjas, A., Hauptmann, A., and Sillanpää, M. J.: Estimation of dynamic SNP-heritability with Bayesian Gaussian process models, Bioinformatics, 36, 3795–3802, https://doi.org/10.1093/bioinformatics/btaa199, 2020a. a
Arjas, A., Roininen, L., Sillanpää, M. J., and Hauptmann, A.: Blind hierarchical deconvolution, in: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP), IEEE, 1–6, https://doi.org/10.1109/MLSP49062.2020.9231822, 2020b. a, b, c
Barker, R. H.: Group synchronizing of binary digital systems, in: Communication Theory, edited by: Jackson, W., Academic Press, New York, 273–287, 1953. a
Download
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.