Articles | Volume 15, issue 14
Research article
20 Jul 2022
Research article |  | 20 Jul 2022

Automated identification of local contamination in remote atmospheric composition time series

Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale


Total article views: 2,200 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,638 524 38 2,200 35 39
  • HTML: 1,638
  • PDF: 524
  • XML: 38
  • Total: 2,200
  • BibTeX: 35
  • EndNote: 39
Views and downloads (calculated since 25 Feb 2022)
Cumulative views and downloads (calculated since 25 Feb 2022)

Viewed (geographical distribution)

Total article views: 2,200 (including HTML, PDF, and XML) Thereof 2,148 with geography defined and 52 with unknown origin.
Country # Views %
  • 1


Latest update: 08 Dec 2023
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.