Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4195-2022
https://doi.org/10.5194/amt-15-4195-2022
Research article
 | 
20 Jul 2022
Research article |  | 20 Jul 2022

Automated identification of local contamination in remote atmospheric composition time series

Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale

Related authors

Optimizing CCN predictions through inferred modal aerosol composition – a boreal forest case study
Rahul Ranjan, Maura Dewey, Liine Heikkinen, Lauri R. Ahonen, Krista Luoma, Paul Bowen, Tuukka Petäjä, Annica M. L. Ekman, Daniel G. Partridge, and Ilona Riipinen
Atmos. Chem. Phys., 25, 17275–17300, https://doi.org/10.5194/acp-25-17275-2025,https://doi.org/10.5194/acp-25-17275-2025, 2025
Short summary
Global fields of daily accumulation-mode particle number concentrations using in situ observations, reanalysis data, and machine learning
Aino Ovaska, Elio Rauth, Daniel Holmberg, Paulo Artaxo, John Backman, Benjamin Bergmans, Don Collins, Marco Aurélio Franco, Shahzad Gani, Roy M. Harrison, Rakesh K. Hooda, Tareq Hussein, Antti-Pekka Hyvärinen, Kerneels Jaars, Adam Kristensson, Markku Kulmala, Lauri Laakso, Ari Laaksonen, Nikolaos Mihalopoulos, Colin O'Dowd, Jakub Ondracek, Tuukka Petäjä, Kristina Plauškaitė, Mira Pöhlker, Ximeng Qi, Peter Tunved, Ville Vakkari, Alfred Wiedensohler, Kai Puolamäki, Tuomo Nieminen, Veli-Matti Kerminen, Victoria A. Sinclair, and Pauli Paasonen
Aerosol Research, 3, 589–618, https://doi.org/10.5194/ar-3-589-2025,https://doi.org/10.5194/ar-3-589-2025, 2025
Short summary
Vertically-resolved source contributions to climate-relevant aerosol properties in Southern Greenlandic fjord systems
Joanna Alden, Nora Bergner, Benjamin Heutte, Lionel Favre, Mihnea Surdu, Julian Weng, Marta Augugliaro, Patrik Winiger, Berkay Dönmez, Roman Pohorsky, Radiance Calmer, Carmelle Chatterjee, Kalliopi Violaki, Athanasios Nenes, Luke Gregor, Silvia Henning, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2025-5710,https://doi.org/10.5194/egusphere-2025-5710, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Measurement report: Optical properties of supermicron aerosol particles in a boreal environment
Sujai Banerji, Krista Luoma, Ilona Ylivinkka, Lauri Ahonen, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 25, 16895–16914, https://doi.org/10.5194/acp-25-16895-2025,https://doi.org/10.5194/acp-25-16895-2025, 2025
Short summary
SIM-HOM (version 1.0): a Mechanistic Module for the formation of highly oxygenated organic molecules from Isoprene, Monoterpene and Sesquiterpene evaluated with ADCHAM (version 1.0)
Liwen Yang, Wei Nie, Mikael Ehn, Chao Yan, Lubna Dada, Yuliang Liu, Pontus Roldin, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2025-3818,https://doi.org/10.5194/egusphere-2025-3818, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute, Journal of large-scale research facilities, 3, 119, https://doi.org/10.17815/jlsrf-3-163, 2017. 
Alroe, J., Cravigan, L. T., Miljevic, B., Johnson, G. R., Selleck, P., Humphries, R. S., Keywood, M. D., Chambers, S. D., Williams, A. G., and Ristovski, Z. D.: Marine productivity and synoptic meteorology drive summer-time variability in Southern Ocean aerosols, Atmos. Chem. Phys., 20, 8047–8062, https://doi.org/10.5194/acp-20-8047-2020, 2020. 
Angot, H., Beck, I., Jokinen, T., Laurila, T., Quéléver, L., and Schmale, J.: Carbon dioxide dry air mole fractions measured in the Swiss container during MOSAiC 2019/2020, PANGAEA [data set], https://doi.pangaea.de/10.1594/PANGAEA.944248, in review, 2022a. 
Download
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Share