Articles | Volume 15, issue 14
https://doi.org/10.5194/amt-15-4225-2022
https://doi.org/10.5194/amt-15-4225-2022
Research article
 | 
21 Jul 2022
Research article |  | 21 Jul 2022

Locations for the best lidar view of mid-level and high clouds

Matthias Tesche and Vincent Noel

Related authors

Arctic Multilayer Clouds Require Accurate Thermodynamic Profiles and Efficient Primary and Secondary Ice Processes for a Realistic Structure and Composition
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2024-2988,https://doi.org/10.5194/egusphere-2024-2988, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Increased number concentrations of small particles explains perceived stagnation in air quality over Korea
Sohee Joo, Juseon Shin, Matthias Tesche, Dehkhoda Naghmeh, Taegyeong Kim, and Youngmin Noh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1208,https://doi.org/10.5194/egusphere-2024-1208, 2024
Short summary
Pristine oceans control the uncertainty in aerosol–cloud interactions
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2024-1863,https://doi.org/10.5194/egusphere-2024-1863, 2024
Short summary
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024,https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024,https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
The first microwave and submillimetre closure study using particle models of oriented ice hydrometeors to simulate polarimetric measurements of ice clouds
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024,https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Polarization upgrade of specMACS: calibration and characterization of the 2D RGB polarization-resolving cameras
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024,https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Advantages of G-band radar in multi-frequency, liquid phase microphysical retrievals
Benjamin Michael Courtier, Alessandro Battaglia, and Kamil Mroz
EGUsphere, https://doi.org/10.5194/egusphere-2024-205,https://doi.org/10.5194/egusphere-2024-205, 2024
Short summary
Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
W-band SZ relationships for rimed snow particles: observational evidence from combined airborne and ground-based observations
Shelby Fuller, Samuel A. Marlow, Samuel Haimov, Matthew Burkhart, Kevin Shaffer, Austin Morgan, and Jefferson R. Snider
Atmos. Meas. Tech., 16, 6123–6142, https://doi.org/10.5194/amt-16-6123-2023,https://doi.org/10.5194/amt-16-6123-2023, 2023
Short summary

Cited articles

Adebiyi, A. A., Zuidema, P., Chang, I., Burton, S. P., and Cairns, B.: Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds, Atmos. Chem. Phys., 20, 11025–11043, https://doi.org/10.5194/acp-20-11025-2020, 2020. a
Alexander, S. P. and Klekociuk, A. R.: Constraining ice water content of thin Antarctic cirrus clouds using ground-based lidar and satellite data, J. Atmos. Sci., 78, 1791–1806, https://doi.org/10.1175/JAS-D-20-0251.1, 2021. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a
Ansmann, A., Mattis, I., Müller, D., Wandinger, U., Radlach, M., Althausen, D., and Damoah, R.: Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar, J. Geophys. Res., 110, D18S12, https://doi.org/10.1029/2004JD005000, 2005. a, b
Ansmann, A., Tesche, M., Althausen, D., Müller, D., Freudenthaler, V., Heese, B., Wiegner, M., Pisani, G., Knippertz, P., and Dubovik, O.: Influence of Saharan dust on cloud glaciation in southern Morocco during SAMUM, J. Geophys. Res., 113, D04210, https://doi.org/10.1029/2007JD008785, 2008. a
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.