Articles | Volume 15, issue 16
Research article
30 Aug 2022
Research article |  | 30 Aug 2022

Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship

Christos Gatidis, Marc Schleiss, and Christine Unal

Related authors

A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245,,, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623,,, 2024
Short summary
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532,,, 2024
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399,,, 2024
Short summary
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217,,, 2024
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832,,, 2024
Short summary

Cited articles

Adirosi, E., Volpi, E., Lombardo, F., and Baldini, L.: Raindrop size distribution: Fitting performance of common theoretical models, Adv. Water Res., 96, 290–305,, 2016. a
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Ocean. Technol., 27, 333–344,, 2010. a
Berne, A. and Schleiss, M.: Retrieval of the rain drop size distribution using telecommunication dual-polarization microwave links, 34th Conference on Radar Meteorology, Williamsburg, VA, USA, October 2009, American Meteorological Society, (last access: 9 October 2009), 2009. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press,, 2001. a, b
Bringi, V. N., Huang, G.-J., Chandrasekar, V., and Gorgucci, E.: A Methodology for Estimating the Parameters of a Gamma Raindrop Size Distribution Model from Polarimetric Radar Data: Application to a Squall-Line Event from the TRMM/Brazil Campaign, J. Atmos. Ocean. Technol., 19, 633–645,<0633:AMFETP>2.0.CO;2, 2002. a
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.