Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4951-2022
https://doi.org/10.5194/amt-15-4951-2022
Research article
 | 
30 Aug 2022
Research article |  | 30 Aug 2022

Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship

Christos Gatidis, Marc Schleiss, and Christine Unal

Related authors

Combined wind lidar and cloud radar for high-resolution wind profiling
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023,https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021,https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021,https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020,https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020,https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023,https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary

Cited articles

Adirosi, E., Volpi, E., Lombardo, F., and Baldini, L.: Raindrop size distribution: Fitting performance of common theoretical models, Adv. Water Res., 96, 290–305, https://doi.org/10.1016/j.advwatres.2016.07.010, 2016. a
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow Observations: A Critical Assessment, J. Atmos. Ocean. Technol., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010. a
Berne, A. and Schleiss, M.: Retrieval of the rain drop size distribution using telecommunication dual-polarization microwave links, 34th Conference on Radar Meteorology, Williamsburg, VA, USA, October 2009, American Meteorological Society, https://ams.confex.com/ams/34Radar/techprogram/paper_155668.htm (last access: 9 October 2009), 2009. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge University Press, https://doi.org/10.1017/CBO9780511541094, 2001. a, b
Bringi, V. N., Huang, G.-J., Chandrasekar, V., and Gorgucci, E.: A Methodology for Estimating the Parameters of a Gamma Raindrop Size Distribution Model from Polarimetric Radar Data: Application to a Squall-Line Event from the TRMM/Brazil Campaign, J. Atmos. Ocean. Technol., 19, 633–645, https://doi.org/10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2, 2002. a
Download
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.