Aneja, V. P., Blunden, J., Claiborn, C. S., and Rogers, H. H.: Dynamic Chamber System to Measure Gaseous Compounds Emissions and Atmospheric-Biospheric Interactions, in: Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, vol. 62, edited by: Barnes, I. and Rudzinski, K. J., Kluwer Academic Publishers, Dordrecht, 97–109, https://doi.org/10.1007/1-4020-4232-9_7, 2006.
Boothroyd, I. M., Almond, S., Qassim, S. M., Worrall, F., and Davies, R. J.:
Fugitive emissions of methane from abandoned, decommissioned oil and gas
wells, Sci. Total Environ., 547, 461–469,
https://doi.org/10.1016/j.scitotenv.2015.12.096, 2016.
Brantley, H. L., Thoma, E. D., and Eisele, A. P.: Assessment of volatile
organic compound and hazardous air pollutant emissions from oil and natural
gas well pads using mobile remote and on-site direct measurements, J. Air Waste Manage., 65, 1072–1082,
https://doi.org/10.1080/10962247.2015.1056888, 2015.
Busse, A. D. and Zimmerman, J. R.: User’s Guide for the Climatological Dispersion Model, National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency, 144 pp., EPA-R4-73-024, 1973.
Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R.
W., Ingraffea, A. R., Cambaliza, M. O. L., Sweeney, C., Karion, A., Davis,
K. J., Stirm, B. H., Montzka, S. A., and Miller, B. R.: Toward a better
understanding and quantification of methane emissions from shale gas
development, P. Natl. Acad. Sci. USA, 111,
6237–6242, https://doi.org/10.1073/pnas.1316546111, 2014.
Caulton, D. R., Li, Q., Bou-Zeid, E., Fitts, J. P., Golston, L. M., Pan, D., Lu, J., Lane, H. M., Buchholz, B., Guo, X., McSpiritt, J., Wendt, L., and Zondlo, M. A.: Quantifying uncertainties from mobile-laboratory-derived emissions of well pads using inverse Gaussian methods, Atmos. Chem. Phys., 18, 15145–15168, https://doi.org/10.5194/acp-18-15145-2018, 2018.
Caulton, D. R., Lu, J. M., Lane, H. M., Buchholz, B., Fitts, J. P., Golston,
L. M., Guo, X., Li, Q., McSpiritt, J., Pan, D., Wendt, L., Bou-Zeid, E., and
Zondlo, M. A.: Importance of Superemitter Natural Gas Well Pads in the
Marcellus Shale, Environ. Sci. Technol., 53, 4747–4754,
https://doi.org/10.1021/acs.est.8b06965, 2019.
Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E., and Dell, C. J.:
Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static
Chambers, J. Vis. Exp., 90, 52110, https://doi.org/10.3791/52110, 2014.
Connolly, J. I., Robinson, R. A., and Gardiner, T. D.: Assessment of the
Bacharach Hi Flow
® Sampler characteristics and potential failure modes when measuring methane emissions, Measurement, 145, 226–233, https://doi.org/10.1016/j.measurement.2019.05.055, 2019.
Cooper, J., Dubey, L., and Hawkes, A.: Methane detection and quantification
in the upstream oil and gas sector: the role of satellites in emissions
detection, reconciling and reporting, Environ. Sci. Atmos., 2, 9–23,
https://doi.org/10.1039/D1EA00046B, 2022.
Delre, A., Hensen, A., Velzeboer, I., van den Bulk, P., Edjabou, M. E., and
Scheutz, C.: Methane and ethane emission quantifications from onshore oil
and gas sites in Romania, using a tracer gas dispersion method,
Elem. Sci. Anth., 10, 000111, https://doi.org/10.1525/elementa.2021.000111, 2022.
Denmead, O. T.: Approaches to measuring fluxes of methane and nitrous oxide
between landscapes and the atmosphere, Plant Soil, 309, 5–24,
https://doi.org/10.1007/s11104-008-9599-z, 2008.
Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M.,
Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., Colombi, N. K.,
Frankenberg, C., McCubbin, I. B., Eastwood, M. L., Falk, M., Herner, J. D.,
Croes, B. E., Green, R. O., and Miller, C. E.: California's methane
super-emitters, Nature, 575, 180–184, https://doi.org/10.1038/s41586-019-1720-3, 2019.
Edie, R., Robertson, A. M., Field, R. A., Soltis, J., Snare, D. A., Zimmerle, D., Bell, C. S., Vaughn, T. L., and Murphy, S. M.: Constraining the accuracy of flux estimates using OTM 33A, Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, 2020.
El Hachem, K. and Kang, M.: Methane and hydrogen sulfide emissions from
abandoned, active, and marginally producing oil and gas wells in Ontario,
Canada, Sci. Total Environ., 823, 153491,
https://doi.org/10.1016/j.scitotenv.2022.153491, 2022.
Flesch, T., Wilson, J., Harper, L., and Crenna, B.: Estimating gas emissions
from a farm with an inverse-dispersion technique, Atmos. Environ.,
39, 4863–4874, https://doi.org/10.1016/j.atmosenv.2005.04.032, 2005.
Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-Time Lagrangian
Stochastic Dispersion Models and Their Application to Estimate Gaseous
Emissions, J. Appl. Meteor., 34, 1320–1332,
https://doi.org/10.1175/1520-0450(1995)034<1320:BTLSDM>2.0.CO;2, 1995.
Flesch, T. K., Harper, L. A., Powell, J. M., and Wilson, J. D.:
Inverse-Dispersion Calculation of Ammonia Emissions from Wisconsin Dairy
Farms, T. ASABE, 52, 253–265,
https://doi.org/10.13031/2013.25946, 2009.
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp.,
https://www.ipcc.ch/report/ar6/wg2/, last access: 1 November 2022.
Kang, M., Kanno, C. M., Reid, M. C., Zhang, X., Mauzerall, D. L., Celia, M.
A., Chen, Y., and Onstott, T. C.: Direct measurements of methane emissions
from abandoned oil and gas wells in Pennsylvania, P. Natl. Acad. Sci. USA, 111, 18173–18177, https://doi.org/10.1073/pnas.1408315111, 2014.
Kang, M., Christian, S., Celia, M. A., Mauzerall, D. L., Bill, M., Miller,
A. R., Chen, Y., Conrad, M. E., Darrah, T. H., and Jackson, R. B.:
Identification and characterization of high methane-emitting abandoned oil
and gas wells, P. Natl. Acad. Sci. USA, 113,
13636–13641, https://doi.org/10.1073/pnas.1605913113, 2016.
Kang, R., Liatsis, P., and Kyritsis, D. C.: Emission Quantification via
Passive Infrared Optical Gas Imaging: A Review, Energies, 15, 3304,
https://doi.org/10.3390/en15093304, 2022.
Laubach, J., Kelliher, F. M., Knight, T. W., Clark, H., Molano, G., and
Cavanagh, A.: Methane emissions from beef cattle – a comparison of paddock-
and animal-scale measurements, Aust. J. Exp. Agric., 48, 132,
https://doi.org/10.1071/EA07256, 2008.
Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of
trace gas exchange: applications and sources of error., in: Biogenic trace gases: measuring emissions from soil and water, edited by: Matson, P. A.
and Harris, R. C., Blackwell Science Ltd., Oxford, UK, 14–51, 1995.
Nisbet, E. G., Fisher, R. E., Lowry, D., France, J. L., Allen, G.,
Bakkaloglu, S., Broderick, T. J., Cain, M., Coleman, M., Fernandez, J.,
Forster, G., Griffiths, P. T., Iverach, C. P., Kelly, B. F. J., Manning, M.
R., Nisbet-Jones, P. B. R., Pyle, J. A., Townsend-Small, A., al-Shalaan, A.,
Warwick, N., and Zazzeri, G.: Methane Mitigation: Methods to Reduce
Emissions, on the Path to the Paris Agreement, Rev. Geophys., 58, e2019RG000675, https://doi.org/10.1029/2019RG000675, 2020.
Pasquill, F.: Atmospheric diffusion. By F. Pasquill. London (Van Nostrand Co.), 1962. Pp. xii, 297; 60s, Q. J. Roy. Meteor. Soc., 88, 202–203, https://doi.org/10.1002/qj.49708837622, 1962.
Pekney, N. J., Diehl, J. R., Ruehl, D., Sams, J., Veloski, G., Patel, A.,
Schmidt, C., and Card, T.: Measurement of methane emissions from abandoned
oil and gas wells in Hillman State Park, Pennsylvania, Carbon Manag., 9,
165–175, https://doi.org/10.1080/17583004.2018.1443642, 2018.
Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J.,
Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J.,
Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P.,
Schreiber, P., Serça, D., Vicca, S., Wolf, B., and Pumpanen, J.:
Comparison of static chambers to measure CH4 emissions from soils,
Agr. Forest Meteorol., 171–172, 124–136,
https://doi.org/10.1016/j.agrformet.2012.11.008, 2013.
Ravikumar, A. P., Wang, J., McGuire, M., Bell, C. S., Zimmerle, D., and
Brandt, A. R.: “Good versus Good Enough?” Empirical Tests of Methane Leak
Detection Sensitivity of a Commercial Infrared Camera, Environ. Sci.
Technol., 52, 2368–2374, https://doi.org/10.1021/acs.est.7b04945, 2018.
Riddick, S. N., Dragosits, U., Blackall, T. D., Daunt, F., Wanless, S., and
Sutton, M. A.: The global distribution of ammonia emissions from seabird
colonies, Atmos. Environ., 55, 319–327,
https://doi.org/10.1016/j.atmosenv.2012.02.052, 2012.
Riddick, S. N., Blackall, T. D., Dragosits, U., Daunt, F., Newell, M., Braban, C. F., Tang, Y. S., Schmale, J., Hill, P. W., Wanless, S., Trathan, P., and Sutton, M. A.: Measurement of ammonia emissions from temperate and sub-polar seabird colonies, Atmos. Environ., 134, 40–50, https://doi.org/10.1016/j.atmosenv.2016.03.016, 2016.
Riddick, S. N., Connors, S., Robinson, A. D., Manning, A. J., Jones, P. S. D., Lowry, D., Nisbet, E., Skelton, R. L., Allen, G., Pitt, J., and Harris, N. R. P.: Estimating the size of a methane emission point source at different scales: from local to landscape, Atmos. Chem. Phys., 17, 7839–7851, https://doi.org/10.5194/acp-17-7839-2017, 2017.
Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., Bressler, K., Chu,
C., and Gum, C. D.: Measuring methane emissions from abandoned and active
oil and gas wells in West Virginia, Sci. Total Environ., 651,
1849–1856, https://doi.org/10.1016/j.scitotenv.2018.10.082, 2019a.
Riddick, S. N., Mauzerall, D. L., Celia, M., Harris, N. R. P., Allen, G., Pitt, J., Staunton-Sykes, J., Forster, G. L., Kang, M., Lowry, D., Nisbet, E. G., and Manning, A. J.: Methane emissions from oil and gas platforms in the North Sea, Atmos. Chem. Phys., 19, 9787–9796, https://doi.org/10.5194/acp-19-9787-2019, 2019b.
Riddick, S. N., Mauzerall, D. L., Celia, M., Allen, G., Pitt, J., Kang, M.,
and Riddick, J. C.: The calibration and deployment of a low-cost methane
sensor, Atmos. Environ., 230, 117440,
https://doi.org/10.1016/j.atmosenv.2020.117440, 2020a.
Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., and Bandilla, K.:
Variability observed over time in methane emissions from abandoned oil and
gas wells, Int. J. Greenh. Gas Con., 100, 103116,
https://doi.org/10.1016/j.ijggc.2020.103116, 2020b.
Riddick, S. N., Ancona, R., Cheptonui, F., Bell, C. S., Duggan, A., Bennett,
K. E., and Zimmerle, D. J.: A cautionary report of calculating methane
emissions using low-cost fence-line sensors, Elem. Sci. Anth., 10, 00021, https://doi.org/10.1525/elementa.2022.00021, 2022.
Ro, K. S., Johnson, M. H., Hunt, P. G., and Flesch, T. K.: Measuring Trace
Gas Emission from Multi-Distributed Sources Using Vertical Radial Plume
Mapping (VRPM) and Backward Lagrangian Stochastic (bLS) Techniques,
Atmosphere, 2, 553–566, https://doi.org/10.3390/atmos2030553, 2011.
Saint-Vincent, P. M. B., Reeder, M. D., Sams, J. I., and Pekney, N. J.: An
Analysis of Abandoned Oil Well Characteristics Affecting Methane Emissions
Estimates in the Cherokee Platform in Eastern Oklahoma, Geophys. Res. Lett.,
47, e2020GL089663, https://doi.org/10.1029/2020GL089663, 2020.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from
air pollution to climate change, Third edition, John Wiley & Sons, Inc,
Hoboken, New Jersey, 1120 pp., ISBN 1118947401, 2016.
Sommer, S. G., McGinn, S. M., and Flesch, T. K.: Simple use of the backwards
Lagrangian stochastic dispersion technique for measuring ammonia emission
from small field-plots, Eur. J. Agron., 23, 1–7,
https://doi.org/10.1016/j.eja.2004.09.001, 2005.
Stovern, M., Murray, J., Schwartz, C., Beeler, C., and Thoma, E. D.:
Understanding oil and gas pneumatic controllers in the Denver–Julesburg
basin using optical gas imaging, J. Air Waste Manage., 70, 468–480, https://doi.org/10.1080/10962247.2020.1735576, 2020.
Townsend-Small, A. and Hoschouer, J.: Direct measurements from shut-in and
other abandoned wells in the Permian Basin of Texas indicate some wells are
a major source of methane emissions and produced water, Environ. Res. Lett.,
16, 054081, https://doi.org/10.1088/1748-9326/abf06f, 2021.
Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., and Lamb, B.
K.: Emissions of coalbed and natural gas methane from abandoned oil and gas
wells in the united states: methane emissions from abandoned wells,
Geophys. Res. Lett., 43, 2283–2290, https://doi.org/10.1002/2015GL067623, 2016.
US EPA: Industrial Source Complex (ISC3) Dispersion Model, U.S. Environmental Protection Agency, Research Triangle Park, NC, User’s Guide, EPA 454/B 95 003a (vol. I) and EPA 454/B 95 003b (vol. II), 1995.
US EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2020:
Updates Under Consideration for Abandoned Oil and Gas Wells,
https://www.epa.gov/system/files/documents/2021-09/2022-ghgi-update-abandoned-wells_sept-2021.pdf, last access: 26 October 2022.
Vaughn, T. L., Ross, C., Zimmerle, D. J., Bennett, K. E., Harrison, M.,
Wilson, A., and Johnson, C.: Open-Source High Flow Sampler for Natural Gas
Leak Quantification, California Air Resources Board,
https://energy.colostate.edu/wp-content/uploads/sites/28/2022/08/FACF_High_Flow_Final_Report_ada.pdf, last access: 26 October 2022.
Zimmerle, D., Vaughn, T., Bell, C., Bennett, K., Deshmukh, P., and Thoma,
E.: Detection Limits of Optical Gas Imaging for Natural Gas Leak Detection
in Realistic Controlled Conditions, Environ. Sci. Technol., 54,
11506–11514, https://doi.org/10.1021/acs.est.0c01285, 2020.