Articles | Volume 15, issue 3
https://doi.org/10.5194/amt-15-735-2022
https://doi.org/10.5194/amt-15-735-2022
Research article
 | 
09 Feb 2022
Research article |  | 09 Feb 2022

A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations

Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao

Related authors

Urban underlying surface modulates summertime thunderstorm processes and associated lightning activities
Tao Shi, Yuanjian Yang, Gaopeng Lu, Zuofang Zheng, Yucheng Zi, Ye Tian, Lei Liu, and Simone Lolli
Atmos. Chem. Phys., 25, 9219–9234, https://doi.org/10.5194/acp-25-9219-2025,https://doi.org/10.5194/acp-25-9219-2025, 2025
Short summary
Measurement report: Insights into seasonal dynamics and planetary boundary layer influences on aerosol chemical components in suburban Nanjing from a long-term observation
Jialu Xu, Yingjie Zhang, Yuying Wang, Xing Yan, Bin Zhu, Chunsong Lu, Yuanjian Yang, Yele Sun, Junhui Zhang, Xiaofan Zuo, Zhanghanshu Han, and Rui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3184,https://doi.org/10.5194/egusphere-2025-3184, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Measurement report: Size-Resolved and Seasonal Variations in Aerosol Hygroscopicity Dominated by Organic Formation and Aging: Insights from a Year-Long Observation in Nanjing
Junhui Zhang, Yuying Wang, Jialu Xu, Xiaofan Zuo, Chunsong Lu, Bin Zhu, Yuanjian Yang, Xing Yan, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3186,https://doi.org/10.5194/egusphere-2025-3186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Diurnal Asymmetry in Nonlinear Responses of Canopy Urban Heat Island to Urban Morphology in Beijing during Heat Wave Periods
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2785,https://doi.org/10.5194/egusphere-2025-2785, 2025
Short summary

Cited articles

Akdemir, S. and Tagarakis, A.: Investigation of Spatial Variability of Air Temperature, Humidity and Velocity in Cold Stores by Using Management Zone Analysis, Tarim Bilim. Derg., 20, 175–186, https://doi.org/10.1501/Tarimbil_0000001277, 2014. 
Al-Ameri, A. Q., Lamit, H., Ossen, D., and Raja Shahminan, R. N.: Urban Heat Island and Thermal Comfort Conditions at Micro-climate Scale in a Tropical Planned City, Energ. Buildings, 133, 577–595, https://doi.org/10.1016/j.enbuild.2016.10.006, 2016. 
Alonso, L. and Renard, F.: Integrating Satellite-Derived Data as Spatial Predictors in Multiple Regression Models to Enhance the Knowledge of Air Temperature Patterns, Urban Science, 3, 101, https://doi.org/10.3390/urbansci3040101, 2019. 
Alonso, L. and Renard, F.: A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models, Remote Sens., 12, 2434, https://doi.org/10.3390/rs12152434, 2020. 
An, N., Dou, J., González-Cruz, J. E., Bornstein, R. D., Miao, S., and Li, L.: An Observational Case Study of Synergies between an Intense Heat Wave and the Urban Heat Island in Beijing, J. Appl. Meteorol. Clim., 59, 605–620, https://doi.org/10.1175/jamc-d-19-0125.1, 2020. 
Download
Short summary
This paper proposes a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a random forest (RF) model. The spatial distribution of CUHII was evaluated at 30 m resolution based on the output of the RF model. The present RF model framework for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII.
Share