Articles | Volume 15, issue 3
https://doi.org/10.5194/amt-15-735-2022
https://doi.org/10.5194/amt-15-735-2022
Research article
 | 
09 Feb 2022
Research article |  | 09 Feb 2022

A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations

Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao

Related authors

Diurnal variation of amplified canopy urban heat island in Beijing megacity during heat wave periods: Roles of mountain-valley circulation and urban morphology
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1200,https://doi.org/10.5194/egusphere-2024-1200, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-87,https://doi.org/10.5194/amt-2024-87, 2024
Preprint under review for AMT
Short summary
Spatial and temporal variation in long-term temperature and water vapor in the mesopause Region
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144,https://doi.org/10.5194/egusphere-2024-1144, 2024
Short summary
Urban morphology modulates thunderstorm process and associatied cloud-to-ground lightning activity over Beijing metropolitan region
Tao Shi, Yuanjian Yang, Gaopeng Lu, Zuofang Zheng, Yucheng Zi, Ye Tian, Lei Liu, and Simone Lolli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2024-3,https://doi.org/10.5194/acp-2024-3, 2024
Preprint under review for ACP
Short summary
An observation-constrained estimation of brown carbon aerosol direct radiative effects
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024,https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024,https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024,https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024,https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024,https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024,https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary

Cited articles

Akdemir, S. and Tagarakis, A.: Investigation of Spatial Variability of Air Temperature, Humidity and Velocity in Cold Stores by Using Management Zone Analysis, Tarim Bilim. Derg., 20, 175–186, https://doi.org/10.1501/Tarimbil_0000001277, 2014. 
Al-Ameri, A. Q., Lamit, H., Ossen, D., and Raja Shahminan, R. N.: Urban Heat Island and Thermal Comfort Conditions at Micro-climate Scale in a Tropical Planned City, Energ. Buildings, 133, 577–595, https://doi.org/10.1016/j.enbuild.2016.10.006, 2016. 
Alonso, L. and Renard, F.: Integrating Satellite-Derived Data as Spatial Predictors in Multiple Regression Models to Enhance the Knowledge of Air Temperature Patterns, Urban Science, 3, 101, https://doi.org/10.3390/urbansci3040101, 2019. 
Alonso, L. and Renard, F.: A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models, Remote Sens., 12, 2434, https://doi.org/10.3390/rs12152434, 2020. 
An, N., Dou, J., González-Cruz, J. E., Bornstein, R. D., Miao, S., and Li, L.: An Observational Case Study of Synergies between an Intense Heat Wave and the Urban Heat Island in Beijing, J. Appl. Meteorol. Clim., 59, 605–620, https://doi.org/10.1175/jamc-d-19-0125.1, 2020. 
Download
Short summary
This paper proposes a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a random forest (RF) model. The spatial distribution of CUHII was evaluated at 30 m resolution based on the output of the RF model. The present RF model framework for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII.