Articles | Volume 16, issue 1
https://doi.org/10.5194/amt-16-153-2023
https://doi.org/10.5194/amt-16-153-2023
Research article
 | 
13 Jan 2023
Research article |  | 13 Jan 2023

Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)

Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo

Related authors

First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024,https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
Evaluation of total ozone measurements from Geostationary Environmental Monitoring Spectrometer (GEMS)
Kanghyun Baek, Jae Hwan Kim, Juseon Bak, David P. Haffner, Mina Kang, and Hyunkee Hong
Atmos. Meas. Tech., 16, 5461–5478, https://doi.org/10.5194/amt-16-5461-2023,https://doi.org/10.5194/amt-16-5461-2023, 2023
Short summary

Cited articles

Bajorski, P.: Statistical inference in PCA for hyperspectral images, IEEE J. Sel. Top. Signa., 5, 438–445, https://doi.org/10.1109/JSTSP.2011.2105244, 2011. 
Bak, J., Baek, K.-H., Kim, J.-H., Liu, X., Kim, J., and Chance, K.: Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation, Atmos. Meas. Tech., 12, 5201–5215, https://doi.org/10.5194/amt-12-5201-2019, 2019. 
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res.-Atmos., 109, D04311, https://doi.org/10.1029/2003jd003962, 2004. 
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. v., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 
Choi, H., Liu, X., Gonzalez Abad, G., Seo, J., Lee, K.-M., and Kim, J.: A Fast Retrieval of Cloud Parameters Using a Triplet of Wavelengths of Oxygen Dimer Band around 477 nm, Remote Sens.-Basel, 13, 152, https://doi.org/10.3390/rs13010152, 2021. 
Download
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Share