Articles | Volume 16, issue 13
https://doi.org/10.5194/amt-16-3363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-16-3363-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Artem G. Feofilov
CORRESPONDING AUTHOR
LMD/IPSL, Sorbonne Université, ENS, PSL Research University, École polytechnique, Institut Polytechnique de Paris, CNRS, Paris, France
Hélène Chepfer
LMD/IPSL, Sorbonne Université, ENS, PSL Research University, École polytechnique, Institut Polytechnique de Paris, CNRS, Paris, France
Vincent Noël
Laboratoire d'Aérologie (Laero), Observatoire
Midi-Pyrénées, Université Toulouse 3, CNRS, IRD, Toulouse, France
Frederic Szczap
Laboratoire de Météorologie Physique (LaMP), UMR 6016, CNRS,
Aubière, France
Related authors
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2065, https://doi.org/10.5194/egusphere-2025-2065, 2025
Short summary
Short summary
Aeolus spaceborne Doppler Wind Lidar observes perfectly co-located vertical profiles of clouds and vertical profiles of horizontal wind that can be used to study cloud-wind interactions. At regional scale, we show that over the Indian Ocean, high cloud fractions increase when the Tropical Easterly Jet is active. At a smaller scale, we observe for the first time from space differences in the wind profiles within the cloud and its surrounding clear sky, that can be imputed to convective motions.
Alexander Kutepov and Artem Feofilov
Geosci. Model Dev., 17, 5331–5347, https://doi.org/10.5194/gmd-17-5331-2024, https://doi.org/10.5194/gmd-17-5331-2024, 2024
Short summary
Short summary
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new routine for very fast and accurate calculations of this cooling in general circulation models. The new algorithm accounts for non-local thermodynamic equilibrium and is about 1000 times faster than the standard matrix algorithms. It is based on advanced techniques for non-equilibrium emission calculations in stellar atmospheres, which so far have not been used in Earth’s and planetary atmospheres.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Marie-Laure Roussel, Hélène Chepfer, Zacharie Titus, and Marine Bonazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-3723, https://doi.org/10.5194/egusphere-2025-3723, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Clouds are crucial for understanding and predicting climate but remain uncertain in models. We reproduced the observations of the CALIPSO and AEOLUS instruments with a lidar simulator to assess the quality of clouds representation in the LMDZ model. A new module was developed for the wind-lidar of AEOLUS. Results show both lidars detect similar cloud biases in the model, supporting the use of AEOLUS in model evaluations and paving the way for consistent multi-decades assessments with EarthCARE.
Jean Lac, Hélène Chepfer, Matthew D. Shupe, and Hannes Griesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3549, https://doi.org/10.5194/egusphere-2025-3549, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Satellite observations show that Arctic spring experiences a rapid increase in liquid-containing clouds over sea ice. Our study shows that this transition is mostly driven by warmer temperatures in early spring than in late spring, favoring more liquid clouds formation, rather than a limited moisture source in early spring. It suggests that, in the future, this transition is likely to occur earlier in spring considering the rapid Arctic warming.
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2065, https://doi.org/10.5194/egusphere-2025-2065, 2025
Short summary
Short summary
Aeolus spaceborne Doppler Wind Lidar observes perfectly co-located vertical profiles of clouds and vertical profiles of horizontal wind that can be used to study cloud-wind interactions. At regional scale, we show that over the Indian Ocean, high cloud fractions increase when the Tropical Easterly Jet is active. At a smaller scale, we observe for the first time from space differences in the wind profiles within the cloud and its surrounding clear sky, that can be imputed to convective motions.
Alexander Kutepov and Artem Feofilov
Geosci. Model Dev., 17, 5331–5347, https://doi.org/10.5194/gmd-17-5331-2024, https://doi.org/10.5194/gmd-17-5331-2024, 2024
Short summary
Short summary
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new routine for very fast and accurate calculations of this cooling in general circulation models. The new algorithm accounts for non-local thermodynamic equilibrium and is about 1000 times faster than the standard matrix algorithms. It is based on advanced techniques for non-equilibrium emission calculations in stellar atmospheres, which so far have not been used in Earth’s and planetary atmospheres.
Mathilde Leroux and Vincent Noel
Atmos. Chem. Phys., 24, 6433–6454, https://doi.org/10.5194/acp-24-6433-2024, https://doi.org/10.5194/acp-24-6433-2024, 2024
Short summary
Short summary
This study investigates the long-term changes in the polar stratospheric cloud (PSC) season from 1980 to 2021 above Antarctica. We analyzed CALIOP observations from 2006 to 2020 to build a statistical temperature-based model. We applied our model to gridded reanalysis temperatures, leading to an integrated view of PSC occurrence that is free from sampling issues, allowing us to document the past evolution of the PSC season.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022, https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Damien Héron, Stephanie Evan, Joris Pianezze, Thibaut Dauhut, Jerome Brioude, Karen Rosenlof, Vincent Noel, Soline Bielli, Christelle Barthe, and Jean-Pierre Cammas
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-870, https://doi.org/10.5194/acp-2020-870, 2020
Publication in ACP not foreseen
Short summary
Short summary
Upward transport within tropical cyclones of water vapor from the low troposphere into the colder upper troposphere/lower stratosphere can result in the moistening of this region. Balloon observations and model simulations of tropical cyclone Enawo in the less-observed Southwest Indian Ocean (the third most tropical cyclone active region on Earth) are used to show how convective overshoots within Enawo penetrate the tropopause directly, injecting water/ice into the stratosphere.
Cited articles
Aerenson, T., Marchand, R., Chepfer, H., and Medeiros, B.: When Will MISR Detect
Rising High Clouds? J. Geophys. Res.-Atmos., 127, e2021JD035865,
https://doi.org/10.1029/2021JD035865, 2022.
Alkasem A., Szczap, F., Cornet, C., Shcherbakov, V., Gour, Y., Jourdan, O.,
Labonnote, L. C., and Mioche, G.: Effects of cirrus heterogeneity on lidar
CALIOP/CALIPSO data, JQSRT, 202, 38–49, https://doi.org/10.1016/j.jqsrt.2017.07.005,
2017.
Berry, E., Mace, G. G., and Gettelman, A. : Using A-Train Observations to
Evaluate Cloud Occurrence and Radiative Effects in the Community Atmosphere
Model during the Southeast Asia Summer Monsoon, J. Climate, 32,
4145–4165, https://doi.org/10.1175/JCLI-D-18-0693.1, 2019.
Beyerle, G., Gross, M. R., Haner, D. A., Kjome, N. T., McDermid, I. S.,
McGee, T. J., Rosen, J. M., Schäfer, H.-J., and Schrems, O.: A Lidar and
Backscatter Sonde Measurement Campaign at Table Mountain during
February-March 1997: Observations of Cirrus Clouds. J. Appl. Meteor., 40,
1275–1287, https://doi.org/10.1175/1520-0469(2001)058<1275:ALABSM>2.0.CO;2, 2001.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H, J.-l. Dufresne, J.-L.,
Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John,
V. O.: COSP, Satellite simulation software for model assessment, B. Am.
Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J. L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M. A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J. Y., Guenet, B., Guez, L. E., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J. B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the IPSL-CM6A-LR
Climate Model, J. Adv. Model. Earth Syst., 12, e2019MS002010,
https://doi.org/10.1029/2019MS002010, 2020.
Cesana, G., Del Genio, A. D., and Chepfer, H.: The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), Earth Syst. Sci. Data, 11, 1745–1764, https://doi.org/10.5194/essd-11-1745-2019, 2019.
Chemke, R.: Future changes in the Hadley circulation: The role of ocean heat
transport, Geophys. Res. Lett., 48, e2020GL091372.
https://doi.org/10.1029/2020GL091372, 2021.
Cheng, Z., Liu, D., Yang, Y., Yang, L., and Huang, H.: Interferometric
filters for spectral discrimination in high-spectral-resolution lidar:
performance comparisons between Fabry–Perot interferometer and
field-widened Michelson interferometer, Appl. Opt., 52, 7838–7850, https://doi.org/10.1364/AO.52.007838, 2013.
Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.-L., and Sèze,
G.: Use of CALIPSO lidar observations to evaluate the cloudiness simulated
by a climate model, Geophys. Res. Let., 35, L15704,
https://doi.org/10.1029/2008GL034207, 2008.
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J.-L., Minnis, P.,
Stubenrauch, C. J., and Zeng, S.: The GCM Oriented Calipso Cloud Product
(CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251,
2010.
Chepfer, H., Cesana, G., Winker, D., Getzewich, B., and Vaughan, M.:
Comparison of two different cloud climatologies derived from CALIOP Level 1
observations: the CALIPSO-ST and the CALIPSO-GOCCP, J. Atmos. Ocean. Technol.,
30, 725–744 https://doi.org/10.1175/JTECH-D-12-00057.1, 2013.
Chepfer, H., Noël, V., Winker, D., and Chiriaco, M.: Where and when will
we observe cloud changes due to climate warming?, Geophys. Res. Lett., 41,
8387–8395, https://doi.org/10.1002/2014GL061792, 2014.
Chepfer, H., Noël, V., Chiriaco, M., Wielicki, B., Winker, D., Loeb, N.,
and Wood, R.: The potential of multi-decades space-born lidar to constrain
cloud feedbacks, J. Geophys. Res.-Atmos., 123, 5433–5454, https://doi.org/10.1002/2017JD027742, 2018.
Chepfer, H., Brogniez, H., and Noël, V.: Diurnal variations of cloud and
relative humidity profiles across the tropics, Sci. Rep., 9, 16045,
https://doi.org/10.1038/s41598-019-52437-6, 2019.
Chiriaco, M., Vautard, R., Chepfer, H., Haeffelin, M., Dudhia, J.,
Wanherdrick, Y., Morille, Y., and Protat, A.: The Ability of MM5 to Simulate
Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and
Lidar/Radar Profiles at the SIRTA Atmospheric Observatory, Mon. Weather
Rev., 134, 897–918, https://doi.org/10.1175/MWR3102.1, 2006.
Davis, S. M. and Rosenlof, K. H.: A multidiagnostic intercomparison of
tropical-width time series using reanalyses and satellite observations, J.
Climate, 25, 1061–1078, 2012.
do Carmo, J. P., Villele, de V., Wallace, K., Lefebvre, A., Ghose, K.,
Kanitz, T., Chassat, F., Corselle, B., Belhadj, T., and Bravetti, P.:
ATmospheric LIDar(ATLID): Pre-launch testing and calibration of the European
Space Agency instrument that will measure aerosols and thin clouds in the
atmosphere, Atmosphere, 12, 76, https://doi.org/10.3390/atmos12010076, 2021.
Donovan, D. P.: The Expected Impact of Multiple Scattering on ATLID Signals,
EPJ Conf., 119, 01006, https://doi.org/10.1051/epjconf/201611901006, 2016.
Durand, Y., Hélière, A., Bézy, J.-L., and Meynart, R.: The ESA
EarthCARE mission: Results of the ATLID instrument pre-developments,
Proc. SPIE, 6750, 675015, https://doi.org/10.1117/12.737932, 2007.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Feofilov, A. G. and Stubenrauch, C. J.: Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders, Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019, 2019.
Feofilov, A. G., Stubenrauch, C. J., and Delanoë, J.: Ice water content vertical profiles of high-level clouds: classification and impact on radiative fluxes, Atmos. Chem. Phys., 15, 12327–12344, https://doi.org/10.5194/acp-15-12327-2015, 2015.
Feofilov, A. G., Chepfer, H., Noël, V., Guzman, R., Gindre, C., Ma, P.-L., and Chiriaco, M.: Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles, Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, 2022.
Garnier, A., Pelon, J., Vaughan, M. A., Winker, D. M., Trepte, C. R., and Dubuisson, P.: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans, Atmos. Meas. Tech., 8, 2759–2774, https://doi.org/10.5194/amt-8-2759-2015, 2015.
Guzman, R., Chepfer, H., Noël, V., Vaillant de Guelis, T., Kay, J. E.,
Raberanto, P., Cesana, G., Vaughan, M. A., and Winker, D. M.: Direct
atmosphere opacity observations from CALIPSO provide new constraints on
cloud-radiation interactions, J. Geophys. Res.-Atmos., 122, 1066–1085,
https://doi.org/10.1002/2016JD025946, 2017.
Haynes, J. M., Marchand, R. T., Luo, Z., Bodas-Salcedo, A., and Stephens, G.
L.: A multipurpose radar simulation package: QuickBeam, B. Am. Meteorol.
Soc., 88, 1723–1727, https://doi.org/10.1175/BAMS-88-11-1723, 2007.
Héliere, A., Gelsthorpe, R., Le Hors, L., and Toulemont, Y.: ATLID, the Atmospheric Lidar on board the EarthCARE Satellite, Proc. SPIE 10564, International Conference on Space Optics – ICSO 2012, 105642D (20 November 2017), https://doi.org/10.1117/12.2309095, 2017.
Heymsfield, A., Krämer, M., Wood, N. B., Gettelman, A., Field, P. R., and Liu, G.: Dependence of the Ice Water Content and Snowfall Rate on Temperature, Globally: Comparison of in Situ Observations, Satellite Active Remote Sensing Retrievals, and Global Climate Model Simulations, J. App. Meteorol. Climatol., 56, 189–215, https://doi.org/10.1175/JAMC-D-16-0230.1, 2017.
Heymsfield, A., Bansemer, A., Wood, N. B., Liu, G., Tanelli, S., Sy, O. O.,
Poellot, M., and Liu, C.: Toward Improving Ice Water Content and Snow-Rate
Retrievals from Radars. Part II: Results from Three Wavelength
Radar–Collocated In Situ Measurements and CloudSat–GPM–TRMM Radar Data,
J. Appl. Met. Clim., 57, 365–389, https://doi.org/10.1175/JAMC-D-17-0164.1, 2018.
Hogan, R. J. and Illingworth, A. J.: Parameterizing Ice Cloud Inhomogeneity
and the Overlap of Inhomogeneities Using Cloud Radar Data, J.
Atmos. Sci., 60, 756–767,
https://doi.org/10.1175/1520-0469(2003)060<0756:PICIAT>2.0.CO;2, 2003.
Hogan, R. J. and Kew, S.F.: A 3D stochastic cloud model for investigating
the radiative properties of inhomogeneous cirrus clouds, Q. J. Roy. Meteorol.
Soc., 131, 2585–2608, https://doi.org/10.1256/qj.04.144, 2005.
Hu, Y., Liu, Z., Winker, D., Vaughan, M., Noel, V., Bissonnette, L., Roy, G., and McGill, M.: Simple relation between lidar multiple scattering and depolarization for water clouds, Opt. Lett., 31, 1809–1811, 2006.
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and
Weimer, C.: CALIPSO Lidar Description and Performance Assessment, J. Atmos.
Ocean. Technol., 26, 1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J.E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013.
Illingworth, A. J., Barker, H. W., Beljaars, A. et al.: The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Kärcher, B., Thornberry, T. D., Krämer, M., and Jensen, E. J.: On
the statistical distribution of total water in cirrus clouds, Geophys. Res.
Lett., 45, 9963–9971, https://doi.org/10.1029/2018GL079780, 2018.
Kingston, R. H.: Detection of Optical and Infrared Radiation, Springer Series
in Optical Sciences, v10, Springer, https://doi.org/10.1007/978-3-540-35948-7, 142 pp., 1978.
Kjellsson, J.: Weakening of the global atmospheric circulation with global
warming, Clim. Dynam., 45, 975–988,
https://doi.org/10.1007/s00382-014-2337-8, 2015.
Klein, S. A. and Jakob, C.: Validation and Sensitivities of Frontal Clouds
Simulated by the ECMWF Model, Mon. Weather Rev., 127, 2514–2531,
https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2,
1999.
Konsta, D., Chepfer, H., and Dufresne, J.-L.: A process oriented
characterization of tropical oceanic clouds for climate model evaluation,
based on a statistical analysis of daytime A-Train observations, Clim. Dynam.,
39, 2091–2108, https://doi.org/10.1007/s00382012-1533-7, 2012.
Leahy, L. V., Wood, R., Charlson, R. J., Hostetler, C. A., Rogers, R. R.,
Vaughan, M. A., and Winker, D. M.: On the nature and extent of optically thin
marine low clouds, J. Geophys. Res.-Atmos., 117, D22201,
https://doi.org/10.1029/2012JD017929, 2022.
Liu, Z. and Sugimoto, N.: Simulation study for cloud detection with space
lidars using analog detection photomultiplier tubes, Appl. Opt., 41,
1750–1759, 2002.
Liu, Z., Hunt, W. H., Vaughan, M., Hostetler, C., McGill, M., Powell, K.,
Winker, D., and Hu, Y.: Estimating random errors due to shot noise in
backscatter lidar observations, Appl. Opt., 45, 4437–4447,
https://doi.org/10.1364/AO.45.004437, 2006.
Marchand, R., Haynes, J., Mace, G. G., Ackerman, T., and Stephens, G.: A
comparison of simulated cloud radar output from the multiscale modeling
framework global climate model with CloudSat cloud radar observations, J.
Geophys. Res., 114, D00A20, https://doi.org/10.1029/2008JD009790, 2009.
McGill, M. J., Vaughan, M. A., Trepte, C. R., Hart, W. D., Hlavka, D. L.,
Winker, D. M., and Kuehn, R.: Airborne validation of spatial properties measured
by the CALIPSO lidar, J. Geophys. Res.-Atmos., 112, D20201,
https://doi.org/10.1029/2007JD008768, 2007.
McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W., and Selmer, P.
A.: The Cloud-Aerosol Transport System (CATS): A technology demonstration on
the International Space Station, Proc. Spie., 9612, https://doi.org/10.1117/12.2190841,
2015.
Nam C., Bony, S., Dufresne, J. L., and Chepfer, H.: The 'too few, too bright'
tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39, 21,
https://doi.org/10.1029/2012GL053421, 2012.
Noel, V.: Monthly global grids of lidar-consistent opaque cloud fractions and altitude of attenuation 2008–2034 according to predictions from CESM2 and IPSL-CM6 GCMs, Zenodo [data set], https://doi.org/10.5281/zenodo.8059374, 2023.
Noel, V., Chepfer, H., Chiriaco, M., and Yorks, J.: The diurnal cycle of cloud profiles over land and ocean between 51∘ S and 51∘ N, seen by the CATS spaceborne lidar from the International Space Station, Atmos. Chem. Phys., 18, 9457–9473, https://doi.org/10.5194/acp-18-9457-2018, 2018.
Perpina, M., Noel, V., Chepfer, H., Guzman, R., and Feofilov, A. G.: Link
between opaque cloud properties and atmospheric dynamics in observations and
simulations of current climate in the Tropics, and impact on future
predictions. J. Geophys. Res.-Atmos., 126, e2020JD033899.
https://doi.org/10.1029/2020JD033899, 2021.
Platt, C. M. R.: Lidar and radiometric observations of cirrus clouds, J.
Atmos. Sci., 30, 1191–1204, 1973.
Rasch, P. J., Xie, S., Ma, P.-L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., Cameron-Smith, P., Singh, B., Wan, H., Golaz, J.-C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., Qian, Y., Taylor, M., Leung, L. R., Zhang, Y., Brent, L., Branstetter, M., Hannay, C., Mahajan, S., Mametjanov, A., Neale, R., Richter, J. H., Yoon, J.-H., Zender, C. S., Bader, D., Flanner, M., Foucar, J. G., Jacob, R., Keen, N., Klein, S. A., Liu, X., Salinger, A. G., Shrivastava, M., and Yang, Y.: An Overview of the Atmospheric Component of the
Energy Exascale Earth System Model, J. Adv. Model. Earth Syst., 11, 2377–2411,
https://doi.org/10.1029/2019MS001629, 2019.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T., Straume, A.-G., Fehr, T., von Bismarck, J., Floberghagen, R., and Parrinello, T.: Initial Assessment of the Performance of
the First Wind Lidar in Space on Aeolus, EPJ Web Conf., 237, 01010,
https://doi.org/10.1051/epjconf/202023701010, 2020.
Reverdy M., Chepfer, H., Donovan, D., Noël, V., Cesana, G., Hoareau, C.,
Chiriaco, M., and Bastin, S.: An EarthCARE/ATLID simulator to evaluate cloud
description in climate models, J. Geophys. Res.-Atmos., 120,
11090–11113, https://doi.org/10.1002/2015JD023919, 2015.
Richardson, M. T., Roy, R. J., and Lebsock, M. D.: Satellites Suggest Rising Tropical High Cloud Altitude: 2002–2021, Geophys. Res. Lett., 49, e2022GL098160, https://doi.org/10.1029/2022GL098160, 2022.
Rogers, R. R., Vaughan, M. A., Hostetler, C. A., Burton, S. P., Ferrare, R. A., Young, S. A., Hair, J. W., Obland, M. D., Harper, D. B., Cook, A. L., and Winker, D. M.: Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data, Atmos. Meas. Tech., 7, 4317–4340, https://doi.org/10.5194/amt-7-4317-2014, 2014.
Sassen, K. and Comstock, J. M.: A midlatitude cirrus cloud climatology from
the facility for atmospheric remote sensing. Part III: Radiative properties,
J. Atmos. Sci., 58, 2113–2127, https://doi.org/10.1175/1520-0469(2001)058<2113:Amcccf>2.0.Co;2, 2001.
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP85 tracks cumulative CO2
emissions, P. Natl. Acad. Sci. USA, 117, 19656–19657,
https://doi.org/10.1073/pnas.2007117117, 2020.
Shcherbakov, V., Szczap, F., Alkasem, A., Mioche, G., and Cornet, C.: Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds, Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022, 2022.
Stevens, B., H-Moeng, C., Ackerman A. S., Bretherton, C. S., Chlond, A., de
Roode, S., Edwards, J., Golaz, J. C., Jiang, H., Khairoutdinov, M.,
Kirkpatrick, M. P., Lewellen, D. C., Lock, A. L., Müller, F., Stevens,
D. E., Whelan, E., and Zhu, P.: Evaluation of large-eddy simulations via
observations of nocturnal marine stratocumulus, Mon. Weather Rev., 133,
1443–1462, 2005.
Straume, A. G., Rennie, M., Isaksen, L., de Kloe, J., Marseille, G.-J., Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D., Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Nikolaus, I., Geiss, A., Flamant, P., Kanitz, T., Wernham, D., von Bismarck, J., Bley, S., Fehr, T., Floberghagen, R., and Parrinello, T.: ESA's Space-Based Doppler Wind Lidar
Mission Aeolus – First Wind and Aerosol Product Assessment Results, EPJ Web
Conf. 237, 01007, https://doi.org/10.1051/epjconf/202023701007, 2020.
Su, H., Jiang, J. H., Zhai, C., Shen, T. J., Neelin, J. D., Stephens, G. L.,
and Yung, Y. L: Weakening and strengthening structures in the Hadley
Circulation change under global warming and implications for cloud response
and climate sensitivity: Circulation, Clouds, Climate Sensitivity, J. Geophys. Res.-Atmos., 119, 5787–5805.
https://doi.org/10.1002/2014JD021642, 2014.
Swales, D. J., Pincus, R., and Bodas-Salcedo, A.: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2, Geosci. Model Dev., 11, 77–81, https://doi.org/10.5194/gmd-11-77-2018, 2018.
Szczap, F., Gour, Y., Fauchez, T., Cornet, C., Faure, T., Jourdan, O., Penide, G., and Dubuisson, P.: A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework, Geosci. Model Dev., 7, 1779–1801, https://doi.org/10.5194/gmd-7-1779-2014, 2014.
Takahashi, H., Lebsock, M. D., Richardson, M., Marchand, R., and Kay, J. E.:
When Will Spaceborne Cloud Radar Detect Upward Shifts in Cloud Heights?, J.
Geophys. Res.-Atmos., 124, 2018JD030242, https://doi.org/10.1029/2018JD030242,
2019.
Vaillant de Guélis, T., Chepfer, H., Noel, V., Guzman, R., Dubuisson, P., Winker, D. M., and Kato, S.: The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated, Atmos. Meas. Tech., 10, 4659–4685, https://doi.org/10.5194/amt-10-4659-2017, 2017.
Vaillant de Guélis T., H. Chepfer, Noël, V., Guzman, R., Bonazzola,
M., and Winker, D. M.: Space lidar observations constrain longwave cloud
feedback, Nature Sci. Rep., 8, 16570, https://doi.org/10.1038/s41598-018-34943-1, 2018.
Voudouri, K. A., Giannakaki, E., Komppula, M., and Balis, D.: Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes, Atmos. Chem. Phys., 20, 4427–4444, https://doi.org/10.5194/acp-20-4427-2020, 2020.
Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M. G., Brown, O., Chepfer, H., Cinquini, L., Durack, P. J., Eyring, V., Mathieu, P.-P., Lee, T., Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Schulz, J., Thépaut, J.-N., and Tuma, M.: Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6, Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, 2020.
Winker, D. M., Pelon, J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R.
J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T.
L., Le Treut, H., Mccormick, M. P., Mégie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO Mission,
A Global 3D View of Aerosols and Clouds, B. Am. Meteor. Soc., 91,
1211–1230, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Winker, D., Chepfer, H., Noël, V., and Cai, X.: Observational
constraints on cloud feedbacks: The role of active satellite sensors,
Surv. Geophys., 38, 1483–1508,
https://doi.org/10.1007/s10712-017-9452-0, 2017.
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018.
Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Computing and
Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II:
Attribution to Changes in Cloud Amount, Altitude, and Optical Depth, J.
Climate, 25, 3736–3754, https://doi.org/10.1175/JCLI-D-11-00249.1,
2012.
Zelinka, M. D., Zhou, C., and Klein, S. A.: Insights from a refined
decomposition of cloud feedbacks, Geophys. Res. Lett., 43, 9259–9269,
https://doi.org/10.1002/2016GL069917, 2016.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of higher climate sensitivity in CMIP6 models,
Geophys. Res. Lett., 47, e2019GL085782,
https://doi.org/10.1029/2019GL085782, 2020.
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
The response of clouds to human-induced climate warming remains the largest source of...
Special issue