Articles | Volume 16, issue 17
https://doi.org/10.5194/amt-16-4101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval of temperature and humidity profiles from ground-based high-resolution infrared observations using an adaptive fast iterative algorithm
Wei Huang
The State Key Laboratory of Complex Electromagnetic Environment
Effects on Electronic and Information System, Luoyang 471003, China
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Bin Yang
The State Key Laboratory of Complex Electromagnetic Environment
Effects on Electronic and Information System, Luoyang 471003, China
Shuai Hu
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Wanying Yang
College of Meteorology and Oceanography, National University of
Defense Technology, Changsha 410073, China
Zhenfeng Li
The State Key Laboratory of Complex Electromagnetic Environment
Effects on Electronic and Information System, Luoyang 471003, China
Wantong Li
Tianjin Meteorological Radar Research & Trial Centre, Tianjin
300061, China
Xiaofan Yang
The State Key Laboratory of Complex Electromagnetic Environment
Effects on Electronic and Information System, Luoyang 471003, China
Related authors
No articles found.
Jinfeng Ding, Yuan Shang, Yulong Shan, Jinkai Ma, Jin Ye, Xichuan Liu, Lei Liu, and Xiaoqiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2718, https://doi.org/10.5194/egusphere-2025-2718, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study employed the numerical model to simulate an intense blowing snow event near Zhongshan Station, East Antarctica, from July 15–17, 2022. While primarily driven by a mid-latitude cyclone, the event’s evolution was strongly modulated by complex local topography, which influenced airflow and enhanced snow transport. Terrain-induced uplift intensified snowfall and prolonged blizzard conditions, underscoring the importance of high-resolution modeling for Antarctic weather research.
Pingyi Dong, Xingwen Jiang, Xingbing Zhao, Yuanchang Dong, Jiafeng Zheng, Chun Hu, Guolu Gao, Lei Liu, Shulei Li, and Lingbing Bu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2523, https://doi.org/10.5194/egusphere-2025-2523, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A method is developed and validated for retrieving vertical profiles of DSD parameters from a single-frequency Ka-band radar in this study. Some unique characteristics of the vertical profiles of DSD parameters in the eastern Tibetan Plateau are found. The empirical relationships for quantitative precipitation estimates and attenuation correction in the eastern Tibetan Plateau with Ka-band radar are derived.
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech., 18, 2261–2278, https://doi.org/10.5194/amt-18-2261-2025, https://doi.org/10.5194/amt-18-2261-2025, 2025
Short summary
Short summary
The Three-Dimensional Precipitation Particle Imager (3D-PPI) was introduced as a new instrument to measure the three-dimensional shape, size, and falling velocity of precipitation particles. Field experiments of the 3D-PPI were conducted in Tulihe, China, during the winter of 2023 to 2024. More than 880 000 snowflakes in a typical snowfall case lasting 13 h were recorded. It shows potential applications in atmospheric science, polar research, and other fields.
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186, https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Short summary
IMPMCT is a dataset containing a 24-year record (2001–2024) of polar storms in the Nordic Seas. These storms, called Polar Mesoscale Cyclones (PMCs), sometimes cause extreme winds and waves, threatening marine operations. IMPMCT combines remote sensing measurements and reanalysis data to construct a comprehensive PMCs archive. It includes 1,184 PMCs tracks, 16,630 cloud patterns, and 4,373 wind records, providing fundamental data for advancing our understanding of their development mechanisms.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Cited articles
Bakushinskii, A. B.: The problem of the convergence of the iteratively regularized Gauss–Newton method, Comp. Math. Math. Phys.+, 32, 1503–1509, 1992.
Barrera-Verdejo, M., Crewell, S., Löhnert, U., Orlandi, E., and Di Girolamo, P.: Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling, Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-9-4013-2016, 2016.
Barthlott, S., Schneider, M., Hase, F., Blumenstock, T., Kiel, M., Dubravica, D., García, O. E., Sepúlveda, E., Mengistu Tsidu, G., Takele Kenea, S., Grutter, M., Plaza-Medina, E. F., Stremme, W., Strong, K., Weaver, D., Palm, M., Warneke, T., Notholt, J., Mahieu, E., Servais, C., Jones, N., Griffith, D. W. T., Smale, D., and Robinson, J.: Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra, Earth Syst. Sci. Data, 9, 15–29, https://doi.org/10.5194/essd-9-15-2017, 2017.
Blumberg, W., Wagner, T., Turner, D., and Correia Jr., J.: Quantifying the
accuracy and uncertainty of diurnal thermodynamic profiles and convection
indices derived from the Atmospheric Emitted Radiance Interferometer,
J. Appl. Meteorol. Clim., 56, 2747–2766, https://doi.org/10.1175/JAMC-D-17-0036.1, 2017.
Blumberg, W. G., Turner, D. D., Löhnert, U., and Castleberry, S.:
Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and
Microwave Observations. Part II: Actual Retrieval Performance in Clear-Sky
and Cloudy Conditions, J. Appl. Meteorol. Clim., 54,
2305–2319, https://doi.org/10.1175/jamc-d-15-0005.1, 2015.
Cimini, D., Westwater, E. R., and Gasiewski, A. J.: Temperature and Humidity
Profiling in the Arctic Using Ground-Based Millimeter-Wave Radiometry and
1DVAR, IEEE T. Geosci. Remote, 48, 1381–1388,
https://doi.org/10.1109/TGRS.2009.2030500, 2010.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, 2018.
Ellingson, R. G., Cess, R. D., and Potter, G. L.: The atmospheric radiation
measurement program: Prelude, Meteor. Mon., 57, 1.1–1.9,
https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0029.1, 2016.
Feltz, W. F., Smith, W. L., Knuteson, R. O., Revercomb, H. E., Woolf, H. M.,
and Howell, H. B.: Meteorological applications of temperature and water
vapor retrievals from the ground-based Atmospheric Emitted Radiance
Interferometer (AERI), J. Appl. Meteorol., 37, 857–875,
https://doi.org/10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2, 1998.
Gardiner, T., Forbes, A., de Mazière, M., Vigouroux, C., Mahieu, E., Demoulin, P., Velazco, V., Notholt, J., Blumenstock, T., Hase, F., Kramer, I., Sussmann, R., Stremme, W., Mellqvist, J., Strandberg, A., Ellingsen, K., and Gauss, M.: Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments, Atmos. Chem. Phys., 8, 6719–6727, https://doi.org/10.5194/acp-8-6719-2008, 2008.
Geerts, B., Raymond, D. J., Grubišić, V., Davis, C. A., Barth, M.
C., Detwiler, A., Klein, P. M., Lee, W.-C., Markowski, P. M., Mullendore, G.
L., and Moore, J. A.: Recommendations for In Situ and Remote Sensing
Capabilities in Atmospheric Convection and Turbulence, B. Am. Meteorol. Soc., 99, 2463–2470, https://doi.org/10.1175/bams-d-17-0310.1, 2018.
Kain, J. S., Coniglio, M. C., Correia, J., Clark, A. J., Marsh, P. T.,
Ziegler, C. L., Lakshmanan, V., Miller, S. D., Dembek, S. R., and Weiss, S.
J.: A feasibility study for probabilistic convection initiation forecasts
based on explicit numerical guidance, B. Am. Meteorol. Soc., 94, 1213–1225, https://doi.org/10.1175/BAMS-D-11-00264.1, 2013.
Kiel, M., Wunch, D., Wennberg, P. O., Toon, G. C., Hase, F., and Blumenstock, T.: Improved retrieval of gas abundances from near-infrared solar FTIR spectra measured at the Karlsruhe TCCON station, Atmos. Meas. Tech., 9, 669–682, https://doi.org/10.5194/amt-9-669-2016, 2016.
Knuteson, R., Revercomb, H., Best, F., Ciganovich, N., Dedecker, R., Dirkx,
T., Ellington, S., Feltz, W., Garcia, R., and Howell, H.: Atmospheric
emitted radiance interferometer. Part I: Instrument design, J. Atmos. Ocean. Tech., 21, 1763–1776, https://doi.org/10.1175/JTECH-1662.1, 2004.
Li, J., Wang, P., Han, H., Li, J., and Zheng, J.: On the assimilation of
satellite sounder data in cloudy skies in numerical weather prediction
models, J. Meteorol. Res., 30, 169–182, https://doi.org/10.1007/s13351-016-5114-2, 2016.
Liu, L., Ye, J., Li, S., Hu, S., and Wang, Q.: A novel machine learning
algorithm for cloud detection using aeri measurement data, Remote Sens.,
14, 2589, https://doi.org/10.3390/rs14112589, 2022.
Maahn, M., Turner, D. D., Löhnert, U., Posselt, D. J., Ebell, K., Mace,
G. G., and Comstock, J. M.: Optimal Estimation Retrievals and Their
Uncertainties: What Every Atmospheric Scientist Should Know, B. Am. Meteorol. Soc., 101, E1512–E1523, https://doi.org/10.1175/bams-d-19-0027.1, 2020.
Revercomb, H. E., Turner, D. D., Tobin, D. C., Knuteson, R. O., Feltz, W.
F., Barnard, J., Bösenberg, J., Clough, S., Cook, D., Ferrare, R.,
Goldsmith, J., Gutman, S., Halthore, R., Lesht, B., Liljegren, J.,
Linné, H., Michalsky, J., Morris, V., Porch, W., Richardson, S., Schmid,
B., Splitt, M., Van Hove, T., Westwater, E., and Whiteman, D.: The Arm
Program's Water Vapor Intensive Observation Periods: Overview, Initial
Accomplishments, and Future Challenges, B. Am. Meteorol. Soc., 84, 217–236, https://doi.org/10.1175/bams-84-2-217, 2003.
Rodgers, C. D.: Information content and optimisation of high spectral
resolution remote measurements, Adv. Space Res., 21, 361–367,
https://doi.org/10.1016/S0273-1177(97)00915-0, 1998.
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and
practice, World scientific, 119–120, ISBN 9814498688, 2000.
Romine, G. S., Schwartz, C. S., Snyder, C., Anderson, J. L., and Weisman, M.
L.: Model bias in a continuously cycled assimilation system and its
influence on convection-permitting forecasts, Mon. Weather Rev., 141,
1263–1284, https://doi.org/10.1175/MWR-D-12-00112.1, 2013.
Rowe, P. M., Walden, V. P., and Warren, S. G.: Measurements of the
foreign-broadened continuum of water vapor in the 6.3 µm band at 30 ∘C, Appl. Optics, 45, 4366–4382, https://doi.org/10.1364/AO.45.004366, 2006.
Schneider, M. and Hase, F.: Ground-based FTIR water vapour profile analyses, Atmos. Meas. Tech., 2, 609–619, https://doi.org/10.5194/amt-2-609-2009, 2009.
Schneider, M., Hase, F., and Blumenstock, T.: Water vapour profiles by ground-based FTIR spectroscopy: study for an optimised retrieval and its validation, Atmos. Chem. Phys., 6, 811–830, https://doi.org/10.5194/acp-6-811-2006, 2006a.
Schneider, M., Hase, F., and Blumenstock, T.: Ground-based remote sensing of HDO H2O ratio profiles: introduction and validation of an innovative retrieval approach, Atmos. Chem. Phys., 6, 4705–4722, https://doi.org/10.5194/acp-6-4705-2006, 2006b.
Sisterson, D., Peppler, R., Cress, T., Lamb, P., and Turner, D.: The ARM
southern great plains (SGP) site, Meteor. Mon., 57, 6.1–6.14,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1, 2016.
Smith, W. L., Feltz, W. F., Knuteson, R. O., Revercomb, H. E., Woolf, H. M.,
and Howell, H. B.: The retrieval of planetary boundary layer structure using
ground-based infrared spectral radiance measurements, J. Atmos. Ocean. Tech., 16, 323–333, https://doi.org/10.1175/1520-0426(1999)016<0323:TROPBL>2.0.CO;2, 1999.
Turner, D. D. and Blumberg, W. G.: Improvements to the AERIoe Thermodynamic
Profile Retrieval Algorithm, IEEE J. Sel. Top. Appl., 12, 1339–1354, https://doi.org/10.1109/JSTARS.2018.2874968, 2019.
Turner, D. D. and Löhnert, U.: Information Content and Uncertainties in
Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the
Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol. Clim., 53, 752–771, https://doi.org/10.1175/jamc-d-13-0126.1, 2014.
Turner, D. D. and Löhnert, U.: Ground-based temperature and humidity profiling: combining active and passive remote sensors, Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, 2021.
Turner, D. D., Feltz, W. F., and Ferrare, R. A.: Continuous water vapor
profiles from operational ground-based active and passive remote sensors,
B. Am. Meteorol. Soc., 81, 1301–1318, https://doi.org/10.1175/1520-0477(2000)081<1301:CWBPFO>2.3.CO;2, 2000.
Turner, D. D., Mlawer, E. J., and Revercomb, H. E.: Water Vapor Observations
in the ARM Program, Meteor. Mon., 57, 13.11–13.18, https://doi.org/10.1175/amsmonographs-d-15-0025.1, 2016.
Viatte, C., Strong, K., Walker, K. A., and Drummond, J. R.: Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic, Atmos. Meas. Tech., 7, 1547–1570, https://doi.org/10.5194/amt-7-1547-2014, 2014.
Wagner, T. J., Klein, P. M., and Turner, D. D.: A new generation of
ground-based mobile platforms for active and passive profiling of the
boundary layer, B. Am. Meteorol. Soc., 100, 137–153, https://doi.org/10.1175/BAMS-D-17-0165.1, 2019.
Wakefield, R. A., Turner, D. D., and Basara, J. B.: Evaluation of a
Land–Atmosphere Coupling Metric Computed from a Ground-Based Infrared
Interferometer, J. Hydrometeorol., 22, 2073–2087, https://doi.org/10.1175/jhm-d-20-0303.1, 2021.
Xu, J., Schreier, F., Doicu, A., and Trautmann, T.: Assessment of
Tikhonov-type regularization methods for solving atmospheric inverse
problems, J. Quant. Spectrosc. Ra., 184, 274–286, https://doi.org/10.1016/j.jqsrt.2016.08.003, 2016.
Yang, J. and Min, Q.: Retrieval of atmospheric profiles in the New York
State Mesonet using one-dimensional variational algorithm, J. Geophys. Res.-Atmos., 123, 7563–7575, https://doi.org/10.1029/2018JD028272, 2018.
Yang, W., Liu, L., Deng, W., Huang, W., Ye, J., and Hu, S.: Deep Retrieval
Architecture of Temperature and Humidity Profiles from Ground-Based Infrared
Hyperspectral Spectrometer, Remote Sens., 15, 2320, https://doi.org/10.3390/rs15092320, 2023.
Ye, J., Liu, L., Yang, W., and Ren, H.: Using Artificial Neural Networks to
Estimate Cloud-Base Height From AERI Measurement Data, IEEE Geosci.
Remote Sens. Lett., 19, 1–5, https://doi.org/10.1109/LGRS.2022.3182473, 2022.
Yin, H., Sun, Y., Liu, C., Lu, X., Smale, D., Blumenstock, T., Nagahama, T.,
Wang, W., Tian, Y., Hu, Q., Shan, C., Zhang, H., and Liu, J.: Ground-based
FTIR observation of hydrogen chloride (HCl) over Hefei, China, and
comparisons with GEOS-Chem model data and other ground-based FTIR stations
data, Opt. Express, 28, 8041–8055, https://doi.org/10.1364/OE.384377, 2020.
Yin, H., Sun, Y., Liu, C., Wang, W., Shan, C., and Zha, L.: Remote Sensing
of Atmospheric Hydrogen Fluoride (HF) over Hefei, China with Ground-Based
High-Resolution Fourier Transform Infrared (FTIR) Spectrometry, Remote
Sens., 13, 791, https://doi.org/10.3390/rs13040791, 2021a.
Yin, H., Sun, Y., Wang, W., Shan, C., Tian, Y., and Liu, C.: Ground-based
high-resolution remote sensing of sulphur hexafluoride (SF6) over Hefei,
China: characterization, optical misalignment, influence, and variability,
Opt. Express, 29, 34051–34065, https://doi.org/10.1364/OE.440193, 2021b.
Zhou, M., Langerock, B., Vigouroux, C., Sha, M. K., Ramonet, M., Delmotte, M., Mahieu, E., Bader, W., Hermans, C., Kumps, N., Metzger, J.-M., Duflot, V., Wang, Z., Palm, M., and De Mazière, M.: Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements, Atmos. Chem. Phys., 18, 13881–13901, https://doi.org/10.5194/acp-18-13881-2018, 2018.
Short summary
To improve the retrieval speed of the AERI optimal estimation (AERIoe) method, a fast-retrieval algorithm named Fast AERIoe is proposed on the basis of the findings that the change in Jacobians during the retrieval process had little effect on the performance of AERIoe. The results of the experiment show that the retrieved profiles from Fast AERIoe are comparable to those of AERIoe and that the retrieval speed is significantly improved, with the average retrieval time reduced by 59 %.
To improve the retrieval speed of the AERI optimal estimation (AERIoe) method, a fast-retrieval...