Articles | Volume 16, issue 18
https://doi.org/10.5194/amt-16-4307-2023
https://doi.org/10.5194/amt-16-4307-2023
Research article
 | 
28 Sep 2023
Research article |  | 28 Sep 2023

Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign

Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang

Related authors

Measurement report: Influence of long-range transported dust on cirrus cloud formation over remote ocean: Case studies near Midway Island, Pacific
Huijia Shen, Zhenping Yin, Yun He, Longlong Wang, Yifan Zhan, and Dongzhe Jing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1844,https://doi.org/10.5194/egusphere-2023-1844, 2023
Preprint archived
Short summary
POLIPHON conversion factors for retrieving dust-related cloud condensation nuclei and ice-nucleating particle concentration profiles at oceanic sites
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023,https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer
Joseph Michalsky and Glen McConville
Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024,https://doi.org/10.5194/amt-17-1017-2024, 2024
Short summary
Validation of initial observation from the first space-borne high spectral resolution lidar with ground-based lidar network
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-235,https://doi.org/10.5194/amt-2023-235, 2023
Revised manuscript accepted for AMT
Short summary
Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023,https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023,https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Algorithm evaluation for Polarimetric Remote Sensing of Atmospheric Aerosols
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-203,https://doi.org/10.5194/amt-2023-203, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. a
Böckmann, C., Wandinger, U., Ansmann, A., Bösenberg, J., Amiridis, V., Boselli, A., Delaval, A., De Tomasi, F., Frioud, M., Grigorov, I. V., and Hågård, A.: Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms, Appl. Optics, 43, 977–989, 2004. a, b
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott III, V. S., and Hwang, I.: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing, J. Atmos. Ocean. Tech., 19, 431–442, 2002. a, b
Chen, Y., Li, F., Shao, N., Wang, X., Wang, Y., Hu, X., and Wang, X.: Aerosol Lidar Intercomparison in the Framework of the MEMO Project. 1. Lidar Self Calibration and 1 st Comparison Observation Calibration Based on Statistical Analysis Method, in: 2019 International Conference on Meteorology Observations (ICMO), 28–31 December 2019, Chengdu, China, IEEE, 1–5, https://doi.org/10.1109/ICMO49322.2019, 2019. a, b, c
Córdoba-Jabonero, C., Ansmann, A., Jiménez, C., Baars, H., López-Cayuela, M.-Á., and Engelmann, R.: Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval, Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, 2021. a
Download
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.